TY - JOUR
T1 - Neural crest
T2 - origin, migration and differentiation
AU - Kelsh, Robert N.
AU - Erickson, Carol A.
PY - 2013
Y1 - 2013
N2 - The neural crest is a population of cells that emigrates from the dorsal neural tube during early embryogenesis and migrates extensively to give rise to a myriad of cell types. Patterns of migration are controlled largely by extracellular cues in the environment. Neural crest cells are initially multipotent. Cell fate specification – the selection of an individual cell fate from all the possibilities available to a multipotent progenitor – is likely to involve a series of steps, in which cells become progressively restricted to individual fates, a process that is likely to begin while still in the dorsal neural tube, but which then is usually completed during, or even after migration. Extracellular cues in the migratory and postmigratory environment act together with intrinsic transcription factors to ensure that specific fates are chosen. Together, these result in expression of one or more transcription factors that activate or cement a gene regulatory network that establishes and maintains expression of the differentiated phenotype.
AB - The neural crest is a population of cells that emigrates from the dorsal neural tube during early embryogenesis and migrates extensively to give rise to a myriad of cell types. Patterns of migration are controlled largely by extracellular cues in the environment. Neural crest cells are initially multipotent. Cell fate specification – the selection of an individual cell fate from all the possibilities available to a multipotent progenitor – is likely to involve a series of steps, in which cells become progressively restricted to individual fates, a process that is likely to begin while still in the dorsal neural tube, but which then is usually completed during, or even after migration. Extracellular cues in the migratory and postmigratory environment act together with intrinsic transcription factors to ensure that specific fates are chosen. Together, these result in expression of one or more transcription factors that activate or cement a gene regulatory network that establishes and maintains expression of the differentiated phenotype.
UR - http://dx.doi.org/10.1002/9780470015902.a0000786.pub2
U2 - 10.1002/9780470015902.a0000786.pub2
DO - 10.1002/9780470015902.a0000786.pub2
M3 - Article
JO - eLS
JF - eLS
ER -