Nature of the band gap of In2O3revealed by first-principles calculations and x-ray spectroscopy

Aron Walsh, J L F Da Silva, S-H Wei, C Korber, A Klein, L F J Piper, A DeMasi, K E Smith, G Panaccione, P Torelli, D J Payne, A Bourlange, R G Egdell

Research output: Contribution to journalArticle

475 Citations (Scopus)

Abstract

Bulk and surface sensitive x-ray spectroscopic techniques are applied in tandem to show that the valence band edge for In(2)O(3) is found significantly closer to the bottom of the conduction band than expected on the basis of the widely quoted bulk band gap of 3.75 eV. First-principles theory shows that the upper valence bands of In(2)O(3) exhibit a small dispersion and the conduction band minimum is positioned at Gamma. However, direct optical transitions give a minimal dipole intensity until 0.8 eV below the valence band maximum. The results set an upper limit on the fundamental band gap of 2.9 eV.
Original languageEnglish
Article number167402
Number of pages4
JournalPhysical Review Letters
Volume100
Issue number16
DOIs
Publication statusPublished - 25 Apr 2008

Keywords

  • oxide
  • optical-properties
  • surfaces
  • films
  • sn-doped in2o3

Fingerprint Dive into the research topics of 'Nature of the band gap of In<sub>2</sub>O<sub>3</sub>revealed by first-principles calculations and x-ray spectroscopy'. Together they form a unique fingerprint.

  • Cite this

    Walsh, A., Da Silva, J. L. F., Wei, S-H., Korber, C., Klein, A., Piper, L. F. J., DeMasi, A., Smith, K. E., Panaccione, G., Torelli, P., Payne, D. J., Bourlange, A., & Egdell, R. G. (2008). Nature of the band gap of In2O3revealed by first-principles calculations and x-ray spectroscopy. Physical Review Letters, 100(16), [167402]. https://doi.org/10.1103/PhysRevLett.100.167402