Multigrid preconditioners for the hybridized Discontinuous Galerkin discretisation of the shallow water equations

Jack Betteridge, Thomas Gibson, Ivan Graham, Eike Müller

Research output: Contribution to journalArticlepeer-review

4 Citations (SciVal)
105 Downloads (Pure)

Abstract

Numerical climate- and weather-prediction models require the fast solution of the equations of fluid dynamics. Discontinuous Galerkin (DG) discretisations have several advantageous properties. They can be used for arbitrary domains and support a structured data layout, which is particularly important on modern chip architectures. For smooth solutions, higher order approximations can be particularly efficient since errors decrease exponentially in the polynomial degree. Due to the wide separation of timescales in atmospheric dynamics, semi-implicit time integrators are highly efficient, since the implicit treatment of fast waves avoids tight constraints on the time step size, and can therefore improve overall efficiency. However, if implicit-explicit (IMEX) integrators are used, a large linear system of equations has to be solved in every time step. A particular problem for DG discretisations of velocity-pressure systems is that the normal Schur-complement reduction to an elliptic system for the pressure is not possible since the numerical fluxes introduce artificial diffusion terms. For the shallow water equations, which form an important model system, hybridised DG methods have been shown to overcome this issue. However, no attention has been paid to the efficient solution of the resulting linear system of equations. In this paper we address this issue and show that the elliptic system for the flux unknowns can be solved efficiently by using a non-nested multigrid algorithm. The method is implemented in the Firedrake library and we demonstrate the excellent performance of the algorithm both for an idealised stationary flow problem in a flat domain and for non-stationary setups in spherical geometry from the well-known testsuite in [Williamson et al. (1992) JCP, 102(1), pp.211-224]. In the latter case the performance of our bespoke multigrid preconditioner (although itself not highly optimised) is comparable to that of a highly optimised direct solver.
Original languageEnglish
Article number109948
Number of pages42
JournalJournal of Computational Physics
Volume426
Early online date26 Oct 2020
DOIs
Publication statusPublished - 1 Feb 2021

Funding

This research made use of the Balena High Performance Computing (HPC) Service at the University of Bath. The PhD of Jack Betteridge was funded by EPSRC as part of the SAMBa CDT in Bath, grant number EP/L015684/1 . We would like to thank all Firedrake developers for their continuous support, in particular Lawrence Mitchell for help with the multigrid implementation. We are grateful to Patrick Farrell (Oxford) for helpful comments. Part of this work was carried out during a short research visit (SRV) to Imperial College in May 2018, funded by the UK-Fluids network ( EPSRC grant EP/N032861/1 ). This research made use of the Balena High Performance Computing (HPC) Service at the University of Bath. The PhD of Jack Betteridge was funded by EPSRC as part of the SAMBa CDT in Bath, grant number EP/L015684/1. We would like to thank all Firedrake developers for their continuous support, in particular Lawrence Mitchell for help with the multigrid implementation. We are grateful to Patrick Farrell (Oxford) for helpful comments. Part of this work was carried out during a short research visit (SRV) to Imperial College in May 2018, funded by the UK-Fluids network (EPSRC grant EP/N032861/1).

Keywords

  • multigrid
  • elliptic PDE
  • Hybridized Discontinuous Galerkin
  • preconditioners
  • atmospheric modelling

Fingerprint

Dive into the research topics of 'Multigrid preconditioners for the hybridized Discontinuous Galerkin discretisation of the shallow water equations'. Together they form a unique fingerprint.

Cite this