Multigraded linear series and recollement

Alastair Craw, Yukari Ito, Joseph Karmazyn

Research output: Contribution to journalArticlepeer-review

9 Citations (SciVal)

Abstract

Given a scheme $Y$ equipped with a collection of globally generated vector bundles $E_1, \dots, E_n$, we study the universal morphism from $Y$ to a fine moduli space $\mathcal{M}(E)$ of cyclic modules over the endomorphism algebra of $E:=\mathcal{O}_Y\oplus E_1\oplus\cdots \oplus E_n$. This generalises the classical morphism to the linear series of a basepoint-free line bundle on a scheme. We describe the image of the morphism and present necessary and sufficient conditions for surjectivity in terms of a recollement of a module category. When the morphism is surjective, this gives a fine moduli space interpretation of the image, and as an application we show that for a small, finite subgroup $G\subset \text{GL}(2,k)$, every sub-minimal partial resolution of $\mathbb{A}^2_k/G$ is isomorphic to a fine moduli space $\mathcal{M}(E_C)$ where $E_C$ is a summand of the bundle $E$ defining the reconstruction algebra. We also consider applications to Gorenstein affine threefolds, where Reid's recipe sheds some light on the classes of algebra from which one can reconstruct a given crepant resolution.
Original languageEnglish
Pages (from-to)535-565
Number of pages31
JournalMathematische Zeitschrift
Volume289
Issue number1-2
Early online date27 Oct 2017
DOIs
Publication statusPublished - 1 Jun 2018

Keywords

  • Linear series
  • Moduli space of quiver representations
  • Noncommutative crepant resolutions
  • Special McKay correspondence

ASJC Scopus subject areas

  • General Mathematics

Fingerprint

Dive into the research topics of 'Multigraded linear series and recollement'. Together they form a unique fingerprint.

Cite this