Projects per year
Abstract
We consider a stochastic aggregation model on Z^d. Start with particles located at the vertices of the lattice, initially distributed according to the product Bernoulli measure with parameter \mu. In addition, there is an aggregate, which initially consists of the origin. Nonaggregated particles move as continuous time simple random walks obeying the exclusion rule, whereas aggregated particles do not move. The aggregate grows by attaching particles to its surface whenever a particle attempts to jump onto it. This evolution is referred to as multiparticle diffusion limited aggregation. Our main result states that if on d>1 the initial density of particles is large enough, then with positive probability the aggregate has linearly growing arms, i.e. if F(t) denotes the point of the aggregate furthest away from the origin at time t>0, then there exists a constant c>0 so that F(t)>ct, for all t eventually. The key conceptual element of our analysis is the introduction and study of a new growth process. Consider a first passage percolation process, called type 1, starting from the origin. Whenever type 1 is about to occupy a new vertex, with positive probability, instead of doing it, it gives rise to another first passage percolation process, called type 2, which starts to spread from that vertex. Each vertex gets occupied only by the process that arrives to it first. This process may have three phases: an extinction phase, where type 1 gets eventually surrounded by type 2 clusters, a coexistence phase, where infinite clusters of both types emerge, and a strong survival phase, where type 1 produces an infinite cluster that successfully surrounds all type 2 clusters. Understanding the behavior of this process in its various phases is of mathematical interest on its own right. We establish the existence of a strong survival phase, and use this to show our main result.
Original language  English 

Pages (fromto)  491571 
Number of pages  81 
Journal  Inventiones Mathematicae 
Volume  218 
Issue number  2 
Early online date  20 May 2019 
DOIs  
Publication status  Published  1 Nov 2019 
Bibliographical note
Improved explanations, statement of the results and coupling between MDLA and FPPHEKeywords
 math.PR
 mathph
 math.MP
Fingerprint
Dive into the research topics of 'Multiparticle diffusion limited aggregation'. Together they form a unique fingerprint.Projects
 1 Finished

Early Career Fellowship  Mathematical Analysis of Strongly Correlated Processes on Discrete Dynamic Structures
Stauffer, A.
Engineering and Physical Sciences Research Council
1/04/16 → 30/09/22
Project: Research council