Abstract
Powered intelligent lower limb prostheses have been gaining interest as they provide functionality for walking on different terrains. This study proposes a hierarchical planner for intelligent lower limb prostheses based on sensor fusion and a central pattern generator (CPG). Electromyographic (EMG) and inertial measurement unit (IMU) signals were recorded and fused in the feature and decision levels. The high-level planner consists of cascade classifiers with a gait phase dependence. A secondary classifier for each stand phase and swing phase was developed to recognize five gait patterns. The mid-level planner was designed as a walking frequency estimator based on the Newton method. The low-level planner incorporates the CPG models, achieving the planning of lower limb joint trajectories. The proposed layered planner can recognize the users' walking intention and gait speed in real-time, ensuring coordination between the joints of both legs. Eight healthy subjects were recruited, and the average accuracy of motion pattern recognition reached 99.13% and 99.39% for the standing and swing phases, respectively. The relative root mean square error (RMSE) of the walking frequency estimate was 2.3% under approximately 3.5 m/s gait speed. The promising results indicate that this method effectively predicts the continuous joint angle for lower limb prostheses.
Original language | English |
---|---|
Article number | 9758822 |
Pages (from-to) | 10719-10729 |
Number of pages | 11 |
Journal | IEEE Sensors Journal |
Volume | 22 |
Issue number | 11 |
Early online date | 18 Apr 2022 |
DOIs | |
Publication status | Published - 1 Jun 2022 |
Keywords
- EMG
- IMU
- Lower limb prosthesis
- central pattern generator
- human-machine interfaces
- sensor fusion
ASJC Scopus subject areas
- Instrumentation
- Electrical and Electronic Engineering