Abstract
Unsymmetrical carbon fiber/epoxy composites with bonded piezoelectric actuators are investigated as a means to shape or morph, the composite structures. Both a cantilever and unsupported laminate structure are examined along with their response to applied strains (from piezoelectric actuators) and applied mechanical load; with particular emphasis on the characterization of shape/deflection, the influence of externally applied mechanical loads and methods of reversing or promoting snap-through of these materials from one stable state to another. A variety of shape change/actuation modes for such structures have been identified namely, (i) reversible actuation by maintaining a constant stable state using piezoelectric actuation, (ii) an increased degree of shape change by irreversible snap-through using piezoelectric actuation and (iii) reversible snap-through using combined piezoelectric actuation and an externally applied load.
Original language | English |
---|---|
Pages (from-to) | 89-98 |
Number of pages | 10 |
Journal | Journal of Intelligent Material Systems and Structures |
Volume | 18 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2007 |