Modulation of respiratory sinus arrhythmia in rats with central pattern generator hardware

Alain Nogaret, Le Zhao, Davi Moraes, Julian F R Paton

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

We report on the modulation of respiratory sinus arrhythmia in rats with central pattern generator (CPG) hardware made of silicon neurons. The neurons are made to compete through mutually inhibitory synapses to provide timed electrical oscillations that stimulate the peripheral end of vagus nerve at specific points of the respiratory cycle: the inspiratory phase (1), the early expiratory phase (2) and the late expiratory phase (3). In this way the CPG hardware mimics the neuron populations in the brainstem which through connections with cardiac vagal motoneurones control respiratory sinus arrhythmia (RSA). Here, we time the output of the CPG hardware from the phrenic nerve activity recorded from rats while monitoring heart rate changes evoked by vagal nerve stimulation (derived from ECG) controlled by the CPG. This neuroelectric stimulation has the effect of reducing the heart rate and increasing the arterial pressure. The artificially induced RSA strongly depends on the timing of pulses within the breathing
cycle. It is strongest when the vagus nerve is stimulated during the inspiratory phase (1) or the early expiratory phase (2) in which case the heart rate slows by 50% of the normal rate. Heart rate modulation is less when the same exact stimulus is applied during the late expiratory phase (3). These trials show
that neurostimulation by CPG hardware can augment respiratory sinus arrhythmia. The CPG hardware technology opens a new line of therapeutic possibilities for prosthetic devices that restore RSA in patients where respiratory-cardiac coupling has been lost.
Original languageEnglish
Pages (from-to)124-132
Number of pages8
JournalJournal of Neuroscience Methods
Volume212
Issue number1
Early online date28 Sep 2012
DOIs
Publication statusPublished - 15 Jan 2013

Fingerprint Dive into the research topics of 'Modulation of respiratory sinus arrhythmia in rats with central pattern generator hardware'. Together they form a unique fingerprint.

Cite this