Modelling gas-liquid mass transfer in wastewater treatment: when current knowledge needs to encounter engineering practice and vice versa

Andreia Amaral, Sylvie Gillot, Manel Garrido-Baserba, Ahlem Filali, Anna M. Karpinska, Benedek G. Plósz, Christopher De Groot, Giacomo Bellandi, Ingmar Nopens, Imre Takács, Izaro Lizarralde, Jose A. Jimenez, Justine Fiat, Leiv Rieger, Magnus Arnell, Mikkel Andersen, Ulf Jeppsson, Usman Rehman, Yannick Fayolle, Youri AmerlinckDiego Rosso

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Gas-liquid mass transfer in wastewater treatment processes has received considerable attention over the last decades from both academia and industry. Indeed, improvements in modelling gas-liquid mass transfer can bring huge benefits in terms of reaction rates, plant energy expenditure, acid-base equilibria and greenhouse gas emissions. Despite these efforts, there is still no universally valid correlation between the design and operating parameters of a wastewater treatment plant and the gas-liquid mass transfer coefficients. That is why the current practice for oxygen mass transfer modelling is to apply overly simplified models, which come with multiple assumptions that are not valid for most applications. To deal with these complexities, correction factors were introduced over time. The most uncertain of them is the α-factor. To build fundamental gas-liquid mass transfer knowledge more advanced modelling paradigms have been applied more recently. Yet these come with a high level of complexity making them impractical for rapid process design and optimisation in an industrial setting. However, the knowledge gained from these more advanced models can help in improving the way the α-factor and thus gas-liquid mass transfer coefficient should be applied. That is why the presented work aims at clarifying the current state-of-the-art in gas-liquid mass transfer modelling of oxygen and other gases, but also to direct academic research efforts towards the needs of the industrial practitioners.

Original languageEnglish
Pages (from-to)607-619
Number of pages13
JournalWater science and technology : a journal of the International Association on Water Pollution Research
Volume80
Issue number4
Early online date25 Jul 2019
DOIs
Publication statusPublished - 15 Aug 2019

ASJC Scopus subject areas

  • Environmental Engineering
  • Water Science and Technology

Fingerprint Dive into the research topics of 'Modelling gas-liquid mass transfer in wastewater treatment: when current knowledge needs to encounter engineering practice and vice versa'. Together they form a unique fingerprint.

Cite this