Modelling Dynamic Photovoltaic Arrays for Marine Applications

Jonathan P. Storey, Jules L. Hammond, Jonathan E. Graham-Harper-Cater, Benjamin W. Metcalfe, Peter R. Wilson

Research output: Chapter or section in a book/report/conference proceedingChapter in a published conference proceeding

5 Citations (SciVal)
194 Downloads (Pure)


This paper presents a new simulator platform with findings from experiments aiming to identify the electrical characteristics of a marine vessel covered in photovoltaic modules, operating in various sea conditions. More specifically, we show that by giving a solar array the ability to reconfigure the arrangement of its modules in real time, that significant improvements (up to 50%) in power yield can be achieved compared to typical static arrays. A bespoke MATLAB simulator has been developed in order to model the complex interplay between the electrical arrangement of photovoltaic modules, the position of the photovoltaic modules on the vessel, the vessel’s tilting motion on the surface of the sea and the resultant irradiance based on the position of the Sun in the sky. Our approach allows the user to define these factors using a simple and intuitive graphical user interface so that a range of scenarios can be quickly simulated. We have used a basic test strategy that allows us to measure the effectiveness of different arrays and quantify performance in terms of mean output power and power stability over a range of sea conditions. A key factor in the effectiveness of the use of marine survey vessels is their ability to remain at sea for extended periods, preferably avoiding the use of high-carbon fuel sources such as diesel generators. This is of particular importance when observing marine life as the platform needs to operate as quietly as possible. The ASV Global C-Enduro autonomous, self-righting platform is the initial application for this new energy harvesting system, with the aim to extend mission endurance. A second case study has also been performed in parallel with this, using a much more divergent orientation of onboard photovoltaic modules in order to asses the ability for a dynamic photovoltaic array to increase and stabilise power output.
Original languageEnglish
Title of host publicationControl and Modeling for Power Electronics
Publication statusPublished - 30 Jun 2016


Dive into the research topics of 'Modelling Dynamic Photovoltaic Arrays for Marine Applications'. Together they form a unique fingerprint.

Cite this