Modelling and measurement of piezoelectric fibres and interdigitated electrodes for the optimisation of piezofibre composites

L J Nelson, C R Bowen, R Stevens, M Cain, M Stewart

Research output: Contribution to journalArticle

26 Citations (Scopus)

Abstract

Commercially available PZT-5A composition fibres fabricated using four production methods were incorporated into 1-3 composites with fibre volume fractions ranging from 0.02 to 0.72. Measurements of the piezoelectric induced strain constants (d(33) and d(31)), relative dielectric constants (epsilon(33)), longitudinal coupling factors (k(33)) and stiffness' (s(33)) of the varying volume fraction composites are compared to analytical expressions in order to extract the fibre properties. Results show 1-3 composite data accurately follows the analytical trends. The Viscous Plastic Process (VPP) fibres are found to exhibit optimum material properties, which approach bulk material values. Reduced piezoelectric activity in extruded fibres is thought to be associated with a small grain size and high porosity. A second study, an optimisation of interdigitated electrode design, was performed using the finite element software ANSYS. The effect of the IDE geometry (electrode width and spacing) and PZT substrate thickness on the strain output of bulk PZT substrates was modelled. Results show optimal actuation occurs at electrode widths equal to half the substrate thickness, and for thin substrates the electrode finger spacing can be reduced to enable lower driving voltages.
Original languageEnglish
Pages (from-to)556-567
Number of pages12
JournalProceedings of SPIE - The International Society for Optical Engineering
Volume5053
Publication statusPublished - 2003

Fingerprint

Electrode
Composite
Fiber
Electrodes
optimization
composite materials
fibers
Substrate
electrodes
Optimization
Fibers
Composite materials
Modeling
Substrates
Volume Fraction
spacing
Spacing
fiber volume fraction
Volume fraction
production engineering

Cite this

@article{7d29409b4e8044a8b2e3d0e4fc3a9c31,
title = "Modelling and measurement of piezoelectric fibres and interdigitated electrodes for the optimisation of piezofibre composites",
abstract = "Commercially available PZT-5A composition fibres fabricated using four production methods were incorporated into 1-3 composites with fibre volume fractions ranging from 0.02 to 0.72. Measurements of the piezoelectric induced strain constants (d(33) and d(31)), relative dielectric constants (epsilon(33)), longitudinal coupling factors (k(33)) and stiffness' (s(33)) of the varying volume fraction composites are compared to analytical expressions in order to extract the fibre properties. Results show 1-3 composite data accurately follows the analytical trends. The Viscous Plastic Process (VPP) fibres are found to exhibit optimum material properties, which approach bulk material values. Reduced piezoelectric activity in extruded fibres is thought to be associated with a small grain size and high porosity. A second study, an optimisation of interdigitated electrode design, was performed using the finite element software ANSYS. The effect of the IDE geometry (electrode width and spacing) and PZT substrate thickness on the strain output of bulk PZT substrates was modelled. Results show optimal actuation occurs at electrode widths equal to half the substrate thickness, and for thin substrates the electrode finger spacing can be reduced to enable lower driving voltages.",
author = "Nelson, {L J} and Bowen, {C R} and R Stevens and M Cain and M Stewart",
note = "ID number: ISIP:000185392900060",
year = "2003",
language = "English",
volume = "5053",
pages = "556--567",
journal = "Proceedings of SPIE - The International Society for Optical Engineering",
issn = "0277-786X",
publisher = "SPIE",

}

TY - JOUR

T1 - Modelling and measurement of piezoelectric fibres and interdigitated electrodes for the optimisation of piezofibre composites

AU - Nelson, L J

AU - Bowen, C R

AU - Stevens, R

AU - Cain, M

AU - Stewart, M

N1 - ID number: ISIP:000185392900060

PY - 2003

Y1 - 2003

N2 - Commercially available PZT-5A composition fibres fabricated using four production methods were incorporated into 1-3 composites with fibre volume fractions ranging from 0.02 to 0.72. Measurements of the piezoelectric induced strain constants (d(33) and d(31)), relative dielectric constants (epsilon(33)), longitudinal coupling factors (k(33)) and stiffness' (s(33)) of the varying volume fraction composites are compared to analytical expressions in order to extract the fibre properties. Results show 1-3 composite data accurately follows the analytical trends. The Viscous Plastic Process (VPP) fibres are found to exhibit optimum material properties, which approach bulk material values. Reduced piezoelectric activity in extruded fibres is thought to be associated with a small grain size and high porosity. A second study, an optimisation of interdigitated electrode design, was performed using the finite element software ANSYS. The effect of the IDE geometry (electrode width and spacing) and PZT substrate thickness on the strain output of bulk PZT substrates was modelled. Results show optimal actuation occurs at electrode widths equal to half the substrate thickness, and for thin substrates the electrode finger spacing can be reduced to enable lower driving voltages.

AB - Commercially available PZT-5A composition fibres fabricated using four production methods were incorporated into 1-3 composites with fibre volume fractions ranging from 0.02 to 0.72. Measurements of the piezoelectric induced strain constants (d(33) and d(31)), relative dielectric constants (epsilon(33)), longitudinal coupling factors (k(33)) and stiffness' (s(33)) of the varying volume fraction composites are compared to analytical expressions in order to extract the fibre properties. Results show 1-3 composite data accurately follows the analytical trends. The Viscous Plastic Process (VPP) fibres are found to exhibit optimum material properties, which approach bulk material values. Reduced piezoelectric activity in extruded fibres is thought to be associated with a small grain size and high porosity. A second study, an optimisation of interdigitated electrode design, was performed using the finite element software ANSYS. The effect of the IDE geometry (electrode width and spacing) and PZT substrate thickness on the strain output of bulk PZT substrates was modelled. Results show optimal actuation occurs at electrode widths equal to half the substrate thickness, and for thin substrates the electrode finger spacing can be reduced to enable lower driving voltages.

M3 - Article

VL - 5053

SP - 556

EP - 567

JO - Proceedings of SPIE - The International Society for Optical Engineering

JF - Proceedings of SPIE - The International Society for Optical Engineering

SN - 0277-786X

ER -