TY - JOUR
T1 - Modeling actuation and sensing in ionic polymer metal composites by electrochemo-poromechanics
AU - Leronni, Alessandro
AU - Bardella, Lorenzo
PY - 2021/3/1
Y1 - 2021/3/1
N2 - Ionic polymer metal composites (IPMCs) consist of an electroactive polymeric membrane plated with metal electrodes. They hold promise as actuators and sensors for soft robotics and biomedical applications. Their capabilities ensue from the motion, within the membrane, of a fluid phase consisting of ions dispersed in a solvent. Toward a thorough understanding of IPMC multiphysics, we propose a large deformation theory combining electrochemistry and poromechanics. Namely, we modify the theory recently developed by Porfiri’s group by introducing the transport of the solvent, whose redistribution determines the volumetric deformation of the fluid-saturated membrane, and we further account for the cross-diffusion of solvent and ions. In actuation, the imposed voltage drop across the electrodes triggers ion migration, such that the solvent is transported toward the cathode by electro-osmosis. This determines the initial bending toward the anode; then, back-relaxation occurs because of both the solvent counter-diffusion and the asymmetric redistribution of ions near the electrodes. In short-circuit sensing, the applied load triggers solvent motion, such that ions are mainly transported toward the cathode by convection with the solvent. This determines charge accumulation; then, ion counter-diffusion leads to a decrease of the charge stored at the electrodes. We demonstrate that these behaviors can be predicted by the proposed theory on the basis of relevant finite element benchmarks. Additionally, our analysis encompasses the assessment of the role of the membrane elastic moduli in the counter-diffusion of solvent and ions in IPMC actuation and sensing.
AB - Ionic polymer metal composites (IPMCs) consist of an electroactive polymeric membrane plated with metal electrodes. They hold promise as actuators and sensors for soft robotics and biomedical applications. Their capabilities ensue from the motion, within the membrane, of a fluid phase consisting of ions dispersed in a solvent. Toward a thorough understanding of IPMC multiphysics, we propose a large deformation theory combining electrochemistry and poromechanics. Namely, we modify the theory recently developed by Porfiri’s group by introducing the transport of the solvent, whose redistribution determines the volumetric deformation of the fluid-saturated membrane, and we further account for the cross-diffusion of solvent and ions. In actuation, the imposed voltage drop across the electrodes triggers ion migration, such that the solvent is transported toward the cathode by electro-osmosis. This determines the initial bending toward the anode; then, back-relaxation occurs because of both the solvent counter-diffusion and the asymmetric redistribution of ions near the electrodes. In short-circuit sensing, the applied load triggers solvent motion, such that ions are mainly transported toward the cathode by convection with the solvent. This determines charge accumulation; then, ion counter-diffusion leads to a decrease of the charge stored at the electrodes. We demonstrate that these behaviors can be predicted by the proposed theory on the basis of relevant finite element benchmarks. Additionally, our analysis encompasses the assessment of the role of the membrane elastic moduli in the counter-diffusion of solvent and ions in IPMC actuation and sensing.
UR - https://doi.org/10.1016/j.jmps.2021.104292
U2 - 10.1016/j.jmps.2021.104292
DO - 10.1016/j.jmps.2021.104292
M3 - Article
SN - 0022-5096
JO - Journal of the Mechanics and Physics of Solids
JF - Journal of the Mechanics and Physics of Solids
ER -