Abstract
Background: The antibiotic bedaquiline is a key component of new WHO regimens for drug-resistant tuberculosis; however, predicting bedaquiline resistance from bacterial genotypes remains challenging. We aimed to understand the genetic mechanisms of bedaquiline resistance by analysing Mycobacterium tuberculosis isolates from South Africa. Methods: For this genomic analysis, we conducted whole-genome sequencing of Mycobacterium tuberculosis samples collected at two referral laboratories in Cape Town and Johannesburg, covering regions of South Africa with a high prevalence of tuberculosis. We used the tool ARIBA to measure the status of predefined genes that are associated with bedaquiline resistance. To produce a broad genetic landscape of M tuberculosis in South Africa, we extended our analysis to include all publicly available isolates from the European Nucleotide Archive, including isolates obtained by the CRyPTIC consortium, for which minimum inhibitory concentrations of bedaquiline were available. Findings: Between Jan 10, 2019, and July, 22, 2020, we sequenced 505 M tuberculosis isolates from 461 patients. Of the 64 isolates with mutations within the mmpR5 regulatory gene, we found 53 (83%) had independent acquisition of 31 different mutations, with a particular enrichment of truncated MmpR5 in bedaquiline-resistant isolates resulting from either frameshift mutations or the introduction of an insertion element. Truncation occurred across three M tuberculosis lineages, and were present in 66% of bedaquiline-resistant isolates. Although the distributions overlapped, the median minimum inhibitory concentration of bedaquiline was 0·25 mg/L (IQR 0·12–0·25) in mmpR5-disrupted isolates, compared with 0·06 mg/L (0·03–0·06) in wild-type M tuberculosis. Interpretation: Reduction in the susceptibility of M tuberculosis to bedaquiline has evolved repeatedly across the phylogeny. In our data, we see no evidence that this reduction has led to the spread of a successful strain in South Africa. Binary phenotyping based on the bedaquiline breakpoint might be inappropriate to monitor resistance to this drug. We recommend the use of minimum inhibitory concentrations in addition to MmpR5 truncation screening to identify moderate increases in resistance to bedaquiline. Funding: US Centers for Disease Control and Prevention.
Original language | English |
---|---|
Article number | 100847 |
Journal | The Lancet Microbe |
Volume | 5 |
Issue number | 8 |
Early online date | 5 Jun 2024 |
DOIs | |
Publication status | Published - 31 Aug 2024 |
Funding
We thank the CRyPTIC consortium for their collection and open release of M\u2009tuberculosis whole-genome sequencing samples with matched minimum inhibitory concentrations of bedaquiline. Financial support for next-generation sequencing was provided by the US Centers for Disease Control and Prevention (NU2GGH002194). LWR was supported by a European Molecular Biology Laboratory Biomedical Postdoctoral Fellowship (EBPOD).
Funders | Funder number |
---|---|
European Molecular Biology Laboratory, Heidelberg | |
Centers for Disease Control and Prevention | NU2GGH002194 |
Centers for Disease Control and Prevention |
ASJC Scopus subject areas
- Microbiology
- Microbiology (medical)
- Infectious Diseases
- Virology