TY - JOUR
T1 - Mitigating the Impact of Bats in Historic Churches: The Response of Natterer’s Bats Myotis nattereri to Artificial Roosts and Deterrence
AU - Zeale, Matthew
AU - Bennitt, Emily
AU - Newson, Stuart
AU - Packman, C
AU - Browne, William
AU - Harris, Stephen
AU - Jones, Gareth
AU - Stone, Emma
PY - 2016/3/24
Y1 - 2016/3/24
N2 - Bats frequently roost in historic churches, and these colonies are of considerable conservation value. Inside churches, bat droppings and urine can cause damage to the historic fabric of the building and to items of cultural significance. In extreme cases, large quantities of droppings can restrict the use of a church for worship and/or other community functions. In the United Kingdom, bats and their roosts are protected by law, and striking a balance between conserving the natural and cultural heritage can be a significant challenge. We investigated mitigation strategies that could be employed in churches and other historic buildings to alleviate problems caused by bats without adversely affecting their welfare or conservation status. We used a combination of artificial roost provision and deterrence at churches in Norfolk, England, where significant maternity colonies of Natterer’s bats Myotis nattereri damage church features. Radio-tracking data and population modelling showed that excluding M. nattereri from churches is likely to have a negative impact on their welfare and conservation status, but that judicious use of deterrents, especially high intensity ultrasound, can mitigate problems caused by bats. We show that deterrence can be used to move bats humanely from specific roosting sites within a church and limit the spread of droppings and urine so that problems to congregations and damage to cultural heritage can be much reduced. In addition, construction of bespoke roost spaces within churches can allow bats to continue to roost within the fabric of the building without flying in the church interior. We highlight that deterrence has the potential to cause serious harm to M. nattereri populations if not used judiciously, and so the effects of deterrents will need careful monitoring, and their use needs strict regulation.
AB - Bats frequently roost in historic churches, and these colonies are of considerable conservation value. Inside churches, bat droppings and urine can cause damage to the historic fabric of the building and to items of cultural significance. In extreme cases, large quantities of droppings can restrict the use of a church for worship and/or other community functions. In the United Kingdom, bats and their roosts are protected by law, and striking a balance between conserving the natural and cultural heritage can be a significant challenge. We investigated mitigation strategies that could be employed in churches and other historic buildings to alleviate problems caused by bats without adversely affecting their welfare or conservation status. We used a combination of artificial roost provision and deterrence at churches in Norfolk, England, where significant maternity colonies of Natterer’s bats Myotis nattereri damage church features. Radio-tracking data and population modelling showed that excluding M. nattereri from churches is likely to have a negative impact on their welfare and conservation status, but that judicious use of deterrents, especially high intensity ultrasound, can mitigate problems caused by bats. We show that deterrence can be used to move bats humanely from specific roosting sites within a church and limit the spread of droppings and urine so that problems to congregations and damage to cultural heritage can be much reduced. In addition, construction of bespoke roost spaces within churches can allow bats to continue to roost within the fabric of the building without flying in the church interior. We highlight that deterrence has the potential to cause serious harm to M. nattereri populations if not used judiciously, and so the effects of deterrents will need careful monitoring, and their use needs strict regulation.
U2 - 10.1371/journal.pone.0152531
DO - 10.1371/journal.pone.0152531
M3 - Article
SN - 1932-6203
VL - 11
JO - PLoS ONE
JF - PLoS ONE
IS - 3
M1 - e0152531
ER -