Projects per year
Abstract
Requirements for lower emissions and operating costs make mass reduction of composite structures a significant issue for future aircraft. Here, minimisation of normalised elastic energy under an uncertain, general in-plane loading is used to indicate laminate efficiency and by equivalence minimum mass. Results are the first to investigate the comparative robustness of standard and non-standard angles to uncertain loading. They indicate that weight reductions of up to 8% can be achieved if optimum design, using standard angle (θ = 0°, ±45° or 90°) and industrial design rules, is replaced by optimising non-standard angles (0° ≤ θ ≤ 180°) directly for uncertain loading. However, greater reductions of up to 20% are possible through alignment of laminate balancing axes with principal loading axes. As such, a non-standard angle design strategy is only shown to be warranted if the demonstrated non-uniqueness of optimum designs can be exploited to improve other performance drivers.
Original language | English |
---|---|
Pages (from-to) | 348-359 |
Number of pages | 12 |
Journal | Composites Part A: Applied Science and Manufacturing |
Volume | 115 |
Early online date | 28 Sept 2018 |
DOIs | |
Publication status | Published - 1 Dec 2018 |
Keywords
- laminates
- Strength
- laminate mechanics
- Robust Design
Fingerprint
Dive into the research topics of 'Minimum mass laminate design for uncertain in-plane loading'. Together they form a unique fingerprint.Projects
- 1 Finished
-
ADAPT
Butler, R. (PI) & Rhead, A. (CoI)
Engineering and Physical Sciences Research Council
1/10/16 → 31/05/21
Project: Research council
Profiles
-
Richard Butler
- Department of Mechanical Engineering - Professor of Aerospace Composites
- EPSRC Centre for Doctoral Training in Statistical Applied Mathematics (SAMBa)
- Centre for Integrated Materials, Processes & Structures (IMPS)
Person: Research & Teaching, Core staff
-
Andrew Rhead
- Department of Mechanical Engineering - Senior Lecturer
- Institute for Mathematical Innovation (IMI)
- Centre for Integrated Materials, Processes & Structures (IMPS)
- IAAPS: Propulsion and Mobility
Person: Research & Teaching, Core staff, Affiliate staff