Microstructural Characterization of Dry Powder Inhaler Formulations Using Orthogonal Analytical Techniques

Goncalo Farias, William Ganley, Robert Price, Denise S. Conti, Sharad Mangal, Elizabeth Bielski, Bryan Newman, Jagdeep Shur

Research output: Contribution to journalArticlepeer-review

3 Citations (SciVal)

Abstract

Purpose

For locally-acting dry powder inhalers (DPIs), developing novel analytical tools that are able to evaluate the state of aggregation may provide a better understanding of the impact of material properties and processing parameters on the in vivo performance. This study explored the utility of the Morphologically-Directed Raman Spectroscopy (MDRS) and dissolution as orthogonal techniques to assess microstructural equivalence of the aerosolized dose of DPIs collected with an aerosol collection device.
Methods

Commercial DPIs containing different strengths of Fluticasone Propionate (FP) and Salmeterol Xinafoate (SX) as monotherapy and combination products were sourced from different regions. These inhalers were compared with aerodynamic particle size distribution (APSD), dissolution, and MDRS studies.
Results

APSD testing alone might not be able to explain differences reported elsewhere in in vivo studies of commercial FP/SX drug products with different Advair® strengths and/or batches. Dissolution studies demonstrated different dissolution rates between Seretide™ 100/50 and Advair® 100/50, whereas Flixotide™ 100 and Flovent® 100 had similar dissolution rates between each other. These differences in dissolution profiles were supported by MDRS results: the dissolution rate is increased if the fraction of FP associated with high soluble components is increased. Principle component analysis was used to identify the agglomerate classes that better discriminate different products.
Conclusions

MDRS and dissolution studies of the aerosolized dose of DPIs were successfully used as orthogonal techniques. This study highlights the importance of further assessing in vitro tools that are able to provide a bridge between material attributes or process parameters and in vivo performance.
Original languageEnglish
Pages (from-to)2015-2029
Number of pages15
JournalPharmaceutical Research
Volume41
Issue number10
Early online date7 Oct 2024
DOIs
Publication statusPublished - Oct 2024

Funding

Funding for this work was made possible, in part, by the Food and Drug Administration through contract HHSF223201710116C.

FundersFunder number
U.S Food and Drug AdministrationHHSF223201710116C

    Keywords

    • bioequivalence
    • dissolution
    • dry powder inhaler
    • orthogonal analytical techniques
    • raman spectroscopy

    ASJC Scopus subject areas

    • Biotechnology
    • Molecular Medicine
    • Pharmacology
    • Pharmaceutical Science
    • Organic Chemistry
    • Pharmacology (medical)

    Fingerprint

    Dive into the research topics of 'Microstructural Characterization of Dry Powder Inhaler Formulations Using Orthogonal Analytical Techniques'. Together they form a unique fingerprint.

    Cite this