Projects per year
Abstract
Entropy is a critical, but often overlooked, factor in determining the relative stabilities of crystal phases. The importance of entropy is most pronounced in softer materials, where small changes in free energy can drive phase transitions, which has recently been demonstrated in the case of organic-inorganic hybrid-formate perovskites. In this Rapid Communication we demonstrate the interplay between composition and crystal structure that is responsible for the particularly pronounced role of entropy in determining polymorphism in hybrid organic-inorganic materials. Using ab initio based lattice dynamics, we probe the origins and effects of vibrational entropy of four archetype perovskite (ABX3) structures. We consider an inorganic material (SrTiO3), an A-site hybrid-halide material (CH3NH3)PbI3, a X-site hybrid material KSr(BH4)3, and a mixed A- and X-site hybrid-formate material (N2H5)Zn(HCO2)3, comparing the differences in entropy between two common polymorphs. The results demonstrate the importance of low-frequency intermolecular modes in determining the phase stability in these materials. The understanding gained allows us to propose a general principle for the relative stability of different polymorphs of hybrid materials as temperature is increased.
Original language | English |
---|---|
Article number | 180103 |
Journal | Physical Review B : Condensed Matter and Materials Physics |
Volume | 94 |
Issue number | 18 |
DOIs | |
Publication status | Published - 1 Nov 2016 |
Fingerprint
Dive into the research topics of 'Microscopic origin of entropy-driven polymorphism in hybrid organic-inorganic perovskite materials'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Multi-Scale Modelling of Hybrid Perovskites for Solar Cells
Walsh, A. (PI)
Engineering and Physical Sciences Research Council
1/02/15 → 31/01/18
Project: Research council
Equipment
-
High Performance Computing (HPC) Facility
Chapman, S. (Manager)
University of BathFacility/equipment: Facility