Abstract
In spite of the clinical need, there is a major gap in rapid diagnostics for identification and quantitation of E. coli and other pathogens, also regarded as the biggest bottleneck in the fight against the spread of antimicrobial resistant bacterial strains. This study reports for the first time an optical, smartphone-based microfluidic fluorescence sandwich immunoassay capable of quantifying E. coli in buffer and synthetic urine in less than 25 min without sample preparation nor concentration. A limit of detection (LoD) up to 240 CFU/mL, comensurate with cut-off for UTIs (103-105 CFUs/mL) was achieved. Replicas of full response curves performed with 100-107 CFUs/mL of E. coli K12 in synthetic urine yielded recovery values in the range 80-120%, assay reproducibility below 30% and precision below 20%, therefore similar to high-performance automated immunoassays. The unrivalled LoD was mainly linked to the 'open fluidics' nature of the 10-bore microfluidic strips used that enabled passing a large volume of sample through the microcapillaries coated with capture antibody. The new smartphone based test has the potential of being as a rapid, point-of-care test for rule-in of E. coli infections that are responsible for around 80% of UTIs, helping to stop the over-prescription of antibiotics and the monitoring of patients with other symptomatic communicable diseases caused by E. coli at global scale.
Original language | English |
---|---|
Article number | 111624 |
Number of pages | 8 |
Journal | Biosensors and Bioelectronics |
Volume | 145 |
Early online date | 6 Sept 2019 |
DOIs | |
Publication status | Published - 1 Dec 2019 |
Bibliographical note
Copyright © 2019 Elsevier B.V. All rights reserved.Fingerprint
Dive into the research topics of 'Microfluidic smartphone quantitation of Escherichia coli in synthetic urine'. Together they form a unique fingerprint.Profiles
-
Nuno Reis
- Department of Chemical Engineering - Reader
- Water Innovation and Research Centre (WIRC)
- Centre for Sustainable and Circular Technologies (CSCT)
- Reaction and Catalysis Engineering research unit (RaCE)
- Centre for Bioengineering & Biomedical Technologies (CBio)
Person: Research & Teaching, Core staff