### Abstract

This paper is motivated by modeling the procedure of formation of a composite material constituted of solid fibers and of a solidifying matrix. The solidification process for the matrix depends on the temperature and on the reticulation rate which thereby influence the mechanical properties of the matrix. The mechanical properties are described by a viscoelastic medium equation of Kelvin-Voigt type with rapidly oscillating periodic coefficients depending on the temperature and the reticulation rate. That is modeled as an initial boundary value problem with time-dependent elasticity and viscosity tensors to account for the solidification, and the mechanical and/or thermal forcing. First we prove the existence and uniqueness of the solution for the problem and obtain a priori estimates. Then we derive the homogenized problem, characterize its coefficients including explicit memory terms, and prove that it admits a unique solution. Finally, we prove error bounds for the asymptotic solution, and establish some related regularity properties of the homogenized solution.

Original language | English |
---|---|

Pages (from-to) | 1603-1630 |

Number of pages | 28 |

Journal | Mathematical Models & Methods in Applied Sciences |

Volume | 19 |

Issue number | 9 |

DOIs | |

Publication status | Published - 2009 |

## Fingerprint Dive into the research topics of 'Memory effect in homogenization of a visoelastic Kelvin-Voigt model with time-dependent coefficients'. Together they form a unique fingerprint.

## Cite this

Abdessamad, Z., Kostin, I., Panasenko, G., & Smyshlyaev, V. P. (2009). Memory effect in homogenization of a visoelastic Kelvin-Voigt model with time-dependent coefficients.

*Mathematical Models & Methods in Applied Sciences*,*19*(9), 1603-1630. https://doi.org/10.1142/S0218202509003905