Abstract
Density functional theory (DFT) calculations were used to explore the Au(I)-catalyzed selective [4 + 1] annulations of cyclopropyl- and H-substituted 1,4-diyn-3-ols with isoxazole. The results indicated that after the N-nucleophilic attack of isoxazole, instead of obtaining the α–hydroxy gold carbene intermediate proposed experimentally, a concerted three-step forward product by isoxazole O[sbnd]N cleavage, 1,2-phenylalkyne shift and the hydroxyl H shift was identified as the key intermediate, for the reaction proceeding either via an Au-assisted C[dbnd]C double-bond rotation to produce the Z-isomeric enone or via two different Au-assisted C[dbnd]C rotations to furnish the E-configured enone depending on the substituents used. Further theoretical investigations indicated that the chemoselective step is the nucleophilic cyclization but not the C[dbnd]C double-bond rotation. The chemoselective preference for the Z-configured product using the cyclopropyl substitutent was attributed to two factors: i) the additional O[tbnd]H[sbnd]N hydrogen bonding interaction stabilizes the rate-determining cyclization TS leading to the Z-product, and ii) further Z-E product-isomerization is blocked due to significant structural deformation being involved. In contrast, using the H substituent results in a reversed chemoselectivity with exclusive formation of the E-configured enone, which is closely related to the smaller entropy effects involved.
Original language | English |
---|---|
Article number | 110647 |
Pages (from-to) | 1-9 |
Number of pages | 9 |
Journal | Molecular Catalysis |
Volume | 480 |
Early online date | 4 Oct 2019 |
DOIs | |
Publication status | Published - 1 Jan 2020 |
Keywords
- 1,4-diyn-3-ols
- Au(I)-catalysis
- DFT
- Selectivity
- [4+1] annulation
ASJC Scopus subject areas
- Catalysis
- Process Chemistry and Technology
- Physical and Theoretical Chemistry