Abstract
This study reports on a facile and widely applicable method of transferring chemical vapor deposited (CVD) graphene uniformly onto optically transparent and mechanically flexible substrates using commercially available, low-cost ultraviolet adhesive (UVA) and hot-press lamination (HPL). We report on the adhesion potential between the graphene and the substrate, and we compare these findings with those of the more commonly used cast polymer handler transfer processes. Graphene transferred with the two proposed methods showed lower surface energy and displayed a higher degree of adhesion (UVA: 4.40 ± 1.09 N/m, HPL: 0.60 ± 0.26 N/m) compared to equivalent CVD-graphene transferred using conventional poly(methyl methacrylate) (PMMA: 0.44 ± 0.06 N/m). The mechanical robustness of the transferred graphene was investigated by measuring the differential resistance as a function of bend angle and repeated bend-relax cycles across a range of bend radii. At a bend angle of 100° and a 2.5 mm bend radius, for both transfer techniques, the normalized resistance of graphene transferred on polyethylene terephthalate (PET) was around 80 times less than that of indium-tin oxide on PET. After 104 bend cycles, the resistance of the transferred graphene on PET using UVA and HPL was found to be, on average, around 25.5 and 8.1% higher than that of PMMA-transferred graphene, indicating that UVA- and HPL-transferred graphene are more strongly adhered compared to PMMA-transferred graphene. The robustness, in terms of maintained electrical performance upon mechanical fatigue, of the transferred graphene was around 60 times improved over ITO/PET upon many thousands of repeated bending stress cycles. On the basis of present production methods, the development of the next-generation of highly conformal, diverse form factor electronics, exploiting the emerging family of two-dimensional materials, necessitates the development of simple, low-cost, and mechanically robust transfer processes; the developed UVA and HPL approaches show significant potential and allow for large-area-compatible, near-room temperature transfer of graphene onto a diverse range of polymeric supports.
Original language | English |
---|---|
Pages (from-to) | 22506-22515 |
Number of pages | 10 |
Journal | ACS Applied Materials and Interfaces |
Volume | 8 |
Issue number | 34 |
Early online date | 2 Aug 2016 |
DOIs | |
Publication status | Published - 31 Aug 2016 |
Keywords
- adhesion
- CVD graphene
- flexible electronics
- large-area transfer
- optical transparency
- surface energy
- time stability
ASJC Scopus subject areas
- General Materials Science
Fingerprint
Dive into the research topics of 'Mechanical Robustness of Graphene on Flexible Transparent Substrates'. Together they form a unique fingerprint.Profiles
-
Matthew Cole
- Department of Electronic & Electrical Engineering - Senior Lecturer
- Centre for Nanoscience and Nanotechnology
- Electronics Materials, Circuits & Systems Research Unit (EMaCS)
- Centre for Integrated Materials, Processes & Structures (IMPS)
Person: Research & Teaching, Core staff