Projects per year
Abstract
Hip fractures are a major cause of morbidity and mortality in the elderly, and incur high health and social care costs. Given projected population ageing, the number of incident hip fractures is predicted to increase globally. As fracture classification strongly determines the chosen surgical treatment, differences in fracture classification influence patient outcomes and treatment costs. We aimed to create a machine learning method for identifying and classifying hip fractures, and to compare its performance to experienced human observers. We used 3,659 hip radiographs, classified by at least two expert clinicians. The machine learning method was able to classify hip fractures with 19% greater accuracy than humans, achieving overall accuracy of 92%.
Original language | English |
---|---|
Article number | 2058 (2022) |
Journal | Scientific Reports |
Volume | 12 |
Issue number | 1 |
DOIs | |
Publication status | Published - 8 Feb 2022 |
Fingerprint
Dive into the research topics of 'Machine learning outperforms clinical experts in classification of hip fractures'. Together they form a unique fingerprint.-
Programme Grant: Mathematics of Deep Learning
Budd, C. (PI) & Ehrhardt, M. (CoI)
Engineering and Physical Sciences Research Council
31/01/22 → 30/01/27
Project: Research council
-
ARCHi: Automated Recognition and Classification of Hip Fracture
Gill, R. (PI) & Ehrhardt, B. (Researcher)
Arthroplasty for Arthritis Charity
2/01/17 → 1/09/19
Project: UK charity
Datasets
-
Dataset for "Machine learning outperforms clinical experts in classification of hip fractures"
Gill, R. (Creator), Ehrhardt, B. (Creator) & Murphy, E. (Creator), University of Bath, 8 Feb 2022
DOI: 10.15125/BATH-01011
Dataset