### Abstract

Original language | English |
---|---|

Article number | 092602 |

Journal | Journal of Engineering for Gas Turbines and Power: Transactions of the ASME |

Volume | 138 |

Issue number | 9 |

DOIs | |

Publication status | Published - Sep 2016 |

### Fingerprint

### Cite this

*Journal of Engineering for Gas Turbines and Power: Transactions of the ASME*,

*138*(9), [092602]. https://doi.org/10.1115/1.4032663

**Lumped capacitance and three-dimensional computational fluid dynamics conjugate heat transfer modelling of an automotive turbocharger.** / Burke, R. D.; Copeland, C. D.; Duda, T.; Reyes Belmonte, M.

Research output: Contribution to journal › Article

*Journal of Engineering for Gas Turbines and Power: Transactions of the ASME*, vol. 138, no. 9, 092602. https://doi.org/10.1115/1.4032663

}

TY - JOUR

T1 - Lumped capacitance and three-dimensional computational fluid dynamics conjugate heat transfer modelling of an automotive turbocharger

AU - Burke, R. D.

AU - Copeland, C. D.

AU - Duda, T.

AU - Reyes Belmonte, M.

N1 - Paper No: GTP-15-1489

PY - 2016/9

Y1 - 2016/9

N2 - One dimensional wave-action engine models have become an essential tool within engine development including stages of component selection, understanding system interactions and control strategy development. Simple turbocharger models are seen as a weak link in the accuracy of these simulation tools and advanced models have been proposed to account for phenomena including heat transfer. In order to run within a full engine code, these models are necessarily simple in structure yet are required to describe a highly complex 3D problem. This paper aims to assess the validity of one of the key assumptions in simple heat transfer models, namely, that the heat transfer between the compressor casing and intake air occurs only after the compression process. Initially a sensitivity study was conducted on a simple lumped capacity thermal model or a turbocharger. A new partition parameter was introduced alpha, which divides the internal wetted area of the compressor housing into pre and post compression. The sensitivity of heat fluxes to alpha was quantified with respect to the sensitivity to turbine inlet temperature (TIT). At low speeds, the TIT was the dominant effect on compressor efficiency whereas at high speed alpha had a similar influence to TIT. However, modelling of the conduction within the compressor housing using an additional thermal resistance caused changes in heat flows of less than 10%. Three dimensional CFD analysis was undertaken using a number of cases approximating different values of alpha. It was seen that when considering a case similar to alpha=0, significant temperature could build up in the impeller area of the compressor housing, indicating the importance of the pre-compression heat path. The 3D simulation was used to estimate a realistic value for alpha which was suggested to be between 0.15 and 0.3. Using a value of this magnitude in the lumped capacitance model showed that at low speed there would be less than 1% point effect on apparent efficiency which would be negligible compared to the 8% point seen as a result of TIT. In contrast, at high speeds, the impact of alpha was similar to that of TIT, both leading to approximately 1% point apparent efficiency error.

AB - One dimensional wave-action engine models have become an essential tool within engine development including stages of component selection, understanding system interactions and control strategy development. Simple turbocharger models are seen as a weak link in the accuracy of these simulation tools and advanced models have been proposed to account for phenomena including heat transfer. In order to run within a full engine code, these models are necessarily simple in structure yet are required to describe a highly complex 3D problem. This paper aims to assess the validity of one of the key assumptions in simple heat transfer models, namely, that the heat transfer between the compressor casing and intake air occurs only after the compression process. Initially a sensitivity study was conducted on a simple lumped capacity thermal model or a turbocharger. A new partition parameter was introduced alpha, which divides the internal wetted area of the compressor housing into pre and post compression. The sensitivity of heat fluxes to alpha was quantified with respect to the sensitivity to turbine inlet temperature (TIT). At low speeds, the TIT was the dominant effect on compressor efficiency whereas at high speed alpha had a similar influence to TIT. However, modelling of the conduction within the compressor housing using an additional thermal resistance caused changes in heat flows of less than 10%. Three dimensional CFD analysis was undertaken using a number of cases approximating different values of alpha. It was seen that when considering a case similar to alpha=0, significant temperature could build up in the impeller area of the compressor housing, indicating the importance of the pre-compression heat path. The 3D simulation was used to estimate a realistic value for alpha which was suggested to be between 0.15 and 0.3. Using a value of this magnitude in the lumped capacitance model showed that at low speed there would be less than 1% point effect on apparent efficiency which would be negligible compared to the 8% point seen as a result of TIT. In contrast, at high speeds, the impact of alpha was similar to that of TIT, both leading to approximately 1% point apparent efficiency error.

UR - http://dx.doi.org/10.1115/1.4032663

U2 - 10.1115/1.4032663

DO - 10.1115/1.4032663

M3 - Article

VL - 138

JO - Journal of Engineering for Gas Turbines and Power: Transactions of the ASME

JF - Journal of Engineering for Gas Turbines and Power: Transactions of the ASME

SN - 0742-4795

IS - 9

M1 - 092602

ER -