Projects per year
Abstract
Increasing Photovoltaic (PV) penetration and low-carbon demand can potentially lead to two different flow peaks, generation, and load, within distribution networks. This will not only constrain PV penetration but also pose serious threats to network reliability. This paper uses energy storage (ES) to reduce system congestion cost caused by the two peaks by sending cost-reflective economic signals to affect ES operation in responding to network conditions. First, a new charging and discharging (C/D) strategy based on binary search method is designed for ES, which responds to system congestion cost over time. Then, a novel pricing method, based on locational marginal pricing (LMP), is designed for ES. The pricing model is derived by evaluating ES impact on the network power flows and congestions from the loss and congestion components in LMP. The impact is then converted into an hourly economic signal to reflect ES operation. The proposed ES C/D strategy and pricing methods are validated on a real local grid supply point area. Results show that the proposed LMP-based pricing is efficient to capture the feature of ES and provide signals for affecting its operation. This work can further increase network flexibility and the capability of networks to accommodate increasing PV penetration.
Original language | English |
---|---|
Pages (from-to) | 3373-3382 |
Number of pages | 10 |
Journal | IEEE Transactions on Power Systems |
Volume | 33 |
Issue number | 3 |
Early online date | 19 Dec 2017 |
DOIs | |
Publication status | Published - 1 May 2018 |
Keywords
- Congestion management
- DG consumption
- Energy storage
- energy storage
- Investment
- LMP
- Load flow
- Loading
- Power system reliability
- Pricing
- pricing
- Reliability
ASJC Scopus subject areas
- Energy Engineering and Power Technology
- Electrical and Electronic Engineering
Fingerprint
Dive into the research topics of 'LMP-based Pricing for Energy Storage in Local Market to Facilitate PV Penetration'. Together they form a unique fingerprint.Projects
- 4 Finished
-
Peer-to-Peer Energy Trading and Sharing - 3M (Multi-times, Multi-scales, Multi-qualities)
Li, F. (PI), Jeon, J. (CoI) & Li, R. (CoI)
Engineering and Physical Sciences Research Council
1/09/16 → 29/02/20
Project: Research council
-
Fellowship - Multi-Vector Energy Distribution System Modelling and Optimisation with Integrated Demand Side Response
Gu, C. (PI)
Engineering and Physical Sciences Research Council
1/09/14 → 31/08/17
Project: Research council
-
High Energy and Power Density (HEAPD) Solutions to Large Energy Deficits
Li, F. (PI), Redfern, M. (CoI) & Walker, I. (CoI)
Engineering and Physical Sciences Research Council
30/06/14 → 29/12/17
Project: Research council
Profiles
-
Chenghong Gu
- Department of Electronic & Electrical Engineering - Professor
- Centre for Sustainable Energy Systems (SES)
- Centre for Climate Adaptation & Environment Research (CAER)
- Centre for Regenerative Design & Engineering for a Net Positive World (RENEW)
- IAAPS: Propulsion and Mobility
Person: Research & Teaching, Core staff, Affiliate staff
-
Furong Li
- Department of Electronic & Electrical Engineering - Professor
- Centre for Doctoral Training in Decarbonisation of the Built Environment (dCarb)
- Centre for Sustainable Energy Systems (SES)
- IAAPS: Propulsion and Mobility
- Institute of Sustainability and Climate Change
Person: Research & Teaching, Core staff, Affiliate staff