Projects per year
Abstract
The defect chemistry, doping behavior, and ion migration in olivine-type materials LiMPO4 (M = Mn, Fe, Co, and N) are investigated by atomistic simulation techniques. The most favorable intrinsic defect type is found to be the cation antisite defect, in which Li and M ions exchange positions. Li migration is found to occur preferentially down [010] channels, following a curved trajectory. Defect association or binding energies for pair clusters composed of combinations of lithium vacancies, antisite cations, and small polaron species are investigated. Migration energies for divalent antisite cations on Li sites suggest that such defects would impede Li diffusion in LiMPO4 to varying degrees. Calculation of dopant substitution energies for cations with charges +1 to +5 indicate that supervalent doping (e.g., Ga3+ Ti4+, Nb5+) on either Li or M sites is energetically unfavorable and does not result in a large increase in electronic (small polaron) species.
Original language | English |
---|---|
Pages (from-to) | 5907-5915 |
Number of pages | 9 |
Journal | Chemistry of Materials |
Volume | 20 |
Issue number | 18 |
Early online date | 25 Aug 2008 |
DOIs | |
Publication status | Published - 23 Sept 2008 |
Fingerprint
Dive into the research topics of 'Lithium battery materials LiMPO4 (M = Mn, Fe, Co, and Ni): insights into defect association, transport mechanisms, and doping behavior'. Together they form a unique fingerprint.Projects
- 1 Finished
-
THE ENERGY STORAGE CONSORTIUM - SUPERGEN LINKED WITH EE191X COLLABORATION - SUPERGEN CONSORTIUM WITH OTHER UNIS
Islam, S. (PI)
Engineering and Physical Sciences Research Council
14/02/06 → 13/10/10
Project: Research council