Abstract
We study the model of binary branching Brownian motion with spatially-inhomogeneous branching rate βδ0(·), where δ0(·) is the Dirac delta function and β is some positive constant. We show that the distribution of the rightmost particle centred about β/2 t converges to a mixture of Gumbel distributions according to a martingale limit. Our results form a natural extension to S. Lalley and T. Sellke [10] for the degenerate case of catalytic branching.
Original language | English |
---|---|
Article number | Paper no. 70 |
Number of pages | 12 |
Journal | Electronic Communications in Probability |
Volume | 21 |
DOIs | |
Publication status | Published - 4 Oct 2016 |
Keywords
- Brownian motion
- Catalytic branching
- Local time