Limit theorems for random spatial drainage networks

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Suppose that, under the action of gravity, liquid drains through the unit d-cube via a minimal-length network of channels constrained to pass through random sites and to now with nonnegative component in one of the canonical orthogonal basis directions of R-d, d >= 2. The resulting network is a version of the so-called minimal directed spanning tree. We give laws of large numbers and convergence in distribution results on the large-sample asymptotic behaviour of the total power-weighted edge length of the network on uniform random points in (0, 1)(d). The distributional results exhibit a weight-dependent phase transition between Gaussian and boundary-effect-derived distributions. These boundary contributions are characterized in terms of limits of the so-called on-line nearest-neighbour graph, a natural model of spatial network evolution, for which we also present some new results. Also, we give a convergence in distribution result for the length of the longest edge in the drainage network; when d = 2, the limit is expressed in terms of Dickman-type variables.

Original languageEnglish
Pages (from-to)659-688
Number of pages30
JournalAdvances in Applied Probability
Volume42
Issue number3
DOIs
Publication statusPublished - Sep 2010

Keywords

  • distributional fixed-point equation
  • Dickman distribution
  • random spatial graph
  • nearest-neighbour graph
  • spanning tree
  • phase transition
  • weak convergence

Fingerprint

Dive into the research topics of 'Limit theorems for random spatial drainage networks'. Together they form a unique fingerprint.

Cite this