Abstract
TRPM2 is a Ca2+-permeable non-selective cation channel activated by binding of adenosine 5′diphosphoribose (ADPR) to its cytoplasmic NUDT9H domain. Activation of TRPM2 by ADPR downstream of oxidative stress has been implicated in the pathogenesis of a number of human diseases rendering TRPM2 an attractive novel target for pharmacological intervention. However, the structural basis underlying this activation is largely unknown. Since ADP alone did not activate or antagonize the channel, we used a chemical biology approach employing synthetic analogues to focus on the role of the ADPR terminal ribose. All novel ADPR derivatives modified in the terminal ribose, including that with the seemingly minor change of methylating the anomeric-OH, abolished agonist activity at TRPM2. Antagonist activity improved as the terminal substituent increasingly resembled the natural ribose, indicating that gating by ADPR might require specific interactions between hydroxyl groups of the terminal ribose and the NUDT9H domain. By mutating amino acid residues of the NUDT9H domain, predicted by modelling and docking to interact with the terminal ribose, we demonstrate that abrogating hydrogen bonding of the amino acids Arg1433 and Tyr1349 interferes with activation of the channel by ADPR. Taken together, using the complementary experimental approaches of chemical modification of the ligand and site-directed mutagenesis of TRPM2, we demonstrate that channel activation critically depends on hydrogen bonding of Arg1433 and Tyr1349 with the terminal ribose. Our findings allow for a more rational design of novel TRPM2 antagonists that may ultimately lead to compounds of therapeutic potential.
Original language | English |
---|---|
Article number | BCJ20170091 |
Pages (from-to) | 2159-2175 |
Journal | Biochemical Journal |
Volume | 474 |
Issue number | 13 |
Early online date | 17 May 2017 |
DOIs | |
Publication status | Published - 16 Jun 2017 |
Fingerprint
Dive into the research topics of 'Ligand induced activation of human TRPM2 requires the terminal ribose of ADPR and involves Arg 1433 and Tyr 1349'. Together they form a unique fingerprint.Equipment
-
Avance III 500 MHz Nuclear Magnetic Resonance (NMR) Spectrometer (9West)
Material and Chemical Characterisation (MC2)Facility/equipment: Equipment
-
Epi-fluorescent microscope Leica Dmi8 in hypoxic cabinet
Material and Chemical Characterisation (MC2)Facility/equipment: Equipment