Lift enhancement through flexibility of plunging wings at low Reynolds numbers

Research output: Contribution to journalArticle

7 Citations (Scopus)
78 Downloads (Pure)

Abstract

In this paper the combined effect of two mechanisms for lift enhancement at low Reynolds numbers are considered, wing oscillations and wing flexibility. The force, deformation and flow fields of rigid and flexible low aspect ratio (AR=3) and high aspect ratio (AR=6) wings oscillating at a fixed post-stall angle of attack of 15° and amplitude of 15% of chord are measured. The force measurements show that flexibility can increase the time-averaged lift coefficient significantly. For low aspect ratio wings the maximum lift coefficient across all Strouhal numbers was Cl=1.38 for the rigid wing as opposed to Cl=2.77 for the flexible wing. Very similar trends were observed for the high aspect ratio wings. This increase is associated with significant deformation of the wing. The root is sinusoidally plunged with small amplitude but this motion is amplified along the span resulting in a larger tip motion but with a phase lag. The amount it is amplified strongly depends on Strouhal number. A Strouhal number of Src=1.5 was selected for detailed flow field measurements due to it being central to the high-lift region of the flexible wings, producing approximately double the lift of the rigid wing. For this Strouhal number the rigid wings exhibit a Leading Edge Vortex (LEV) ring. This is where the clockwise upper-surface LEV pairs with the counter-clockwise lower-surface LEV to form a vortex ring that self-advects upstream and away from the wing's upper surface. Conversely the deformation of the flexible wings inhibits the formation of the LEV ring. Instead a strong upper-surface LEV forms during the downward motion and convects close to the airfoil upper surface thus explaining the significantly higher lift. These measurements demonstrate the significant gains that can be achieved through the combination of unsteady aerodynamics with flexible structures.
Original languageEnglish
Pages (from-to)27-45
JournalJournal of Fluids and Structures
Volume64
DOIs
Publication statusPublished - 1 Jul 2016

Fingerprint

Strouhal number
Vortex flow
Reynolds number
Rigid wings
Flexible wings
Aspect ratio
Flow fields
Low aspect ratio wings
Flexible structures
Force measurement
Angle of attack
Airfoils
Aerodynamics

Cite this

Lift enhancement through flexibility of plunging wings at low Reynolds numbers. / Cleaver, David; Calderon, D.E.; Wang, Zhijin; Gursul, Ismet.

In: Journal of Fluids and Structures, Vol. 64, 01.07.2016, p. 27-45.

Research output: Contribution to journalArticle

@article{487e4cbb33f84da0820da08dcd656fe0,
title = "Lift enhancement through flexibility of plunging wings at low Reynolds numbers",
abstract = "In this paper the combined effect of two mechanisms for lift enhancement at low Reynolds numbers are considered, wing oscillations and wing flexibility. The force, deformation and flow fields of rigid and flexible low aspect ratio (AR=3) and high aspect ratio (AR=6) wings oscillating at a fixed post-stall angle of attack of 15° and amplitude of 15{\%} of chord are measured. The force measurements show that flexibility can increase the time-averaged lift coefficient significantly. For low aspect ratio wings the maximum lift coefficient across all Strouhal numbers was Cl=1.38 for the rigid wing as opposed to Cl=2.77 for the flexible wing. Very similar trends were observed for the high aspect ratio wings. This increase is associated with significant deformation of the wing. The root is sinusoidally plunged with small amplitude but this motion is amplified along the span resulting in a larger tip motion but with a phase lag. The amount it is amplified strongly depends on Strouhal number. A Strouhal number of Src=1.5 was selected for detailed flow field measurements due to it being central to the high-lift region of the flexible wings, producing approximately double the lift of the rigid wing. For this Strouhal number the rigid wings exhibit a Leading Edge Vortex (LEV) ring. This is where the clockwise upper-surface LEV pairs with the counter-clockwise lower-surface LEV to form a vortex ring that self-advects upstream and away from the wing's upper surface. Conversely the deformation of the flexible wings inhibits the formation of the LEV ring. Instead a strong upper-surface LEV forms during the downward motion and convects close to the airfoil upper surface thus explaining the significantly higher lift. These measurements demonstrate the significant gains that can be achieved through the combination of unsteady aerodynamics with flexible structures.",
author = "David Cleaver and D.E. Calderon and Zhijin Wang and Ismet Gursul",
year = "2016",
month = "7",
day = "1",
doi = "10.1016/j.jfluidstructs.2016.04.004",
language = "English",
volume = "64",
pages = "27--45",
journal = "Journal of Fluids and Structures",
issn = "0889-9746",
publisher = "Elsevier Academic Press Inc",

}

TY - JOUR

T1 - Lift enhancement through flexibility of plunging wings at low Reynolds numbers

AU - Cleaver, David

AU - Calderon, D.E.

AU - Wang, Zhijin

AU - Gursul, Ismet

PY - 2016/7/1

Y1 - 2016/7/1

N2 - In this paper the combined effect of two mechanisms for lift enhancement at low Reynolds numbers are considered, wing oscillations and wing flexibility. The force, deformation and flow fields of rigid and flexible low aspect ratio (AR=3) and high aspect ratio (AR=6) wings oscillating at a fixed post-stall angle of attack of 15° and amplitude of 15% of chord are measured. The force measurements show that flexibility can increase the time-averaged lift coefficient significantly. For low aspect ratio wings the maximum lift coefficient across all Strouhal numbers was Cl=1.38 for the rigid wing as opposed to Cl=2.77 for the flexible wing. Very similar trends were observed for the high aspect ratio wings. This increase is associated with significant deformation of the wing. The root is sinusoidally plunged with small amplitude but this motion is amplified along the span resulting in a larger tip motion but with a phase lag. The amount it is amplified strongly depends on Strouhal number. A Strouhal number of Src=1.5 was selected for detailed flow field measurements due to it being central to the high-lift region of the flexible wings, producing approximately double the lift of the rigid wing. For this Strouhal number the rigid wings exhibit a Leading Edge Vortex (LEV) ring. This is where the clockwise upper-surface LEV pairs with the counter-clockwise lower-surface LEV to form a vortex ring that self-advects upstream and away from the wing's upper surface. Conversely the deformation of the flexible wings inhibits the formation of the LEV ring. Instead a strong upper-surface LEV forms during the downward motion and convects close to the airfoil upper surface thus explaining the significantly higher lift. These measurements demonstrate the significant gains that can be achieved through the combination of unsteady aerodynamics with flexible structures.

AB - In this paper the combined effect of two mechanisms for lift enhancement at low Reynolds numbers are considered, wing oscillations and wing flexibility. The force, deformation and flow fields of rigid and flexible low aspect ratio (AR=3) and high aspect ratio (AR=6) wings oscillating at a fixed post-stall angle of attack of 15° and amplitude of 15% of chord are measured. The force measurements show that flexibility can increase the time-averaged lift coefficient significantly. For low aspect ratio wings the maximum lift coefficient across all Strouhal numbers was Cl=1.38 for the rigid wing as opposed to Cl=2.77 for the flexible wing. Very similar trends were observed for the high aspect ratio wings. This increase is associated with significant deformation of the wing. The root is sinusoidally plunged with small amplitude but this motion is amplified along the span resulting in a larger tip motion but with a phase lag. The amount it is amplified strongly depends on Strouhal number. A Strouhal number of Src=1.5 was selected for detailed flow field measurements due to it being central to the high-lift region of the flexible wings, producing approximately double the lift of the rigid wing. For this Strouhal number the rigid wings exhibit a Leading Edge Vortex (LEV) ring. This is where the clockwise upper-surface LEV pairs with the counter-clockwise lower-surface LEV to form a vortex ring that self-advects upstream and away from the wing's upper surface. Conversely the deformation of the flexible wings inhibits the formation of the LEV ring. Instead a strong upper-surface LEV forms during the downward motion and convects close to the airfoil upper surface thus explaining the significantly higher lift. These measurements demonstrate the significant gains that can be achieved through the combination of unsteady aerodynamics with flexible structures.

UR - http://dx.doi.org/10.1016/j.jfluidstructs.2016.04.004

U2 - 10.1016/j.jfluidstructs.2016.04.004

DO - 10.1016/j.jfluidstructs.2016.04.004

M3 - Article

VL - 64

SP - 27

EP - 45

JO - Journal of Fluids and Structures

JF - Journal of Fluids and Structures

SN - 0889-9746

ER -