Lift Enhancement of a Stationary Wing in a Wake

Zhehong Zhang, Zhijin Wang, Ismet Gursul

Research output: Contribution to journalArticlepeer-review

15 Citations (SciVal)
85 Downloads (Pure)


A stationary wing placed in the wake of a bluff body experiences lift enhancement. The quasi-periodic flow in the wake causes excitation of the separated flow in the post-stall conditions. The increase in the time-averaged lift force is associated with the flow separation, leading-edge vortex formation and subsequent reattachment in a process similar to the dynamic stall of oscillating wings. The lift enhancement is maximum for an optimal offset distance from the wake centerline. At the optimal location, potential flow oscillations, rather than the direct impingement of large vortices in the wake, provide the excitation. The smaller amplitude flow oscillations lead to a large separation bubble in the time-averaged sense in the post-stall regime. The delayed flow separation in the wake has a similar mechanism and frequency to those of the active flow control methods for separation. The degree of the lift enhancement is remarkable, given that the wake at a Reynolds number of 50,000 is expected to be highly three-dimensional.
Original languageEnglish
Pages (from-to)4613-4619
Number of pages7
JournalAIAA Journal
Issue number11
Early online date6 Oct 2020
Publication statusPublished - 30 Nov 2020


Dive into the research topics of 'Lift Enhancement of a Stationary Wing in a Wake'. Together they form a unique fingerprint.

Cite this