Lift enhancement by means of small-amplitude airfoil oscillations at low Reynolds numbers

David James Cleaver, Zhijin Wang, Ismet Gursul, M. R. Visbal

Research output: Contribution to journalArticlepeer-review

97 Citations (SciVal)
308 Downloads (Pure)


Force and particle image velocimetry measurements were conducted on a NACA 0012 airfoil undergoing small-amplitude sinusoidal plunge oscillations at a poststall angle of attack and Reynolds number of 10,000. With increasing frequency of oscillation, lift increases and drag decreases due to the leading-edge vortices shed and convected over the suction surface of the airfoil. Within this regime, the lift coefficient increases approximately linearly with the normalized plunge velocity. Local maxima occur in the lift coefficient due to the resonance with the most unstable wake frequency, its subharmonic and first harmonic, producing the most efficient conditions for high-lift generation. At higher frequencies, a second mode of flowfield occurs. The leading-edge vortex remains nearer the leading edge of the airfoil and loses its coherency through impingement with the upward-moving airfoil. To capture this impingement process, high-fidelity computational simulations were performed that showed the highly transitional nature of the flow and a strong interaction between the upper and lower-surface vortices. A sudden loss of lift may also occur at high frequencies for larger amplitudes in this mode.
Original languageEnglish
Pages (from-to)2018-2033
Number of pages16
JournalAIAA Journal
Issue number9
Publication statusPublished - Sept 2011


Dive into the research topics of 'Lift enhancement by means of small-amplitude airfoil oscillations at low Reynolds numbers'. Together they form a unique fingerprint.

Cite this