Abstract

The construction sector is a large consumer of non-renewable resources and it is responsible of 44% of global energy related CO2 emissions. Circular economy is an emerging strategy that has potential to make significant improvements in the construction industry, by taking efficient and sustainable actions against climate change. The principles of circular economy are to minimise the waste of resources, by maximizing materials' performances, whilst in use, and recycle and regenerate them at the end of their service life. Natural materials can potentially be suitable in this strategy, due to the use of renewable resources, carbon sequestration potential, and high suitability for reuse and recycling. The development of bio-based wall panel is a first step into the integration of a circular economy approach in the construction sector. In this study, vapour responsive bio-based panel prototypes with low thermal transmittance (U<0.20 W/m2K) are being designed, taking into consideration the burdens and benefits of natural materials over their entire life cycle. The challenge is to assess the environmental impact of the panels during their design and production, maximise performance and life span, when in use, and regenerate and recycle panel components at the end of the service life. In this paper, a life cycle assessment of a prototype bio-based panel designed with circular economy principles is investigated. The environmental impact of the panel is analysed to investigate limitation in assessing emissions and use of resources in a circular prospective. The objective of the research is to integrate environmental impact analysis during the early stage of panel design. This will put the basis for the development of a sustainable and circular building industry and for identifying area of improvements for the development of sustainable circular panels with expected hygrothermal benefits conferred using bio-based materials.
Original languageEnglish
Pages (from-to)124-134
Number of pages11
JournalConstruction Technologies and Architecture
Volume1
DOIs
Publication statusPublished - 31 Jan 2022

Fingerprint

Dive into the research topics of 'Life Cycle Assessment of Circular Bio-Based Construction'. Together they form a unique fingerprint.

Cite this