Abstract
We investigate curved flats in Lie sphere geometry. We show that in this setting curved flats are in one-to-one correspondence with pairs of Demoulin families of Lie applicable surfaces related by Darboux transformation.
Original language | English |
---|---|
Pages (from-to) | 525–533 |
Number of pages | 9 |
Journal | Manuscripta Mathematica |
Volume | 168 |
Issue number | 3-4 |
Early online date | 21 Apr 2021 |
DOIs | |
Publication status | Published - 31 Jul 2022 |
Bibliographical note
Funding Information:This work was supported by the Austrian Science Fund (FWF) through the research project P28427-N35 “Non-rigidity and symmetry breaking", GNSAGA of INdAM and the MIUR grant “Dipartimenti di Eccellenza” 2018 - 2022, CUP: E11G18000350001, DISMA, Politecnico di Torino.
Funding Information:
Open access funding provided by Politecnico di Torino within the CRUI-CARE Agreement.
Funding
This work was supported by the Austrian Science Fund (FWF) through the research project P28427-N35 “Non-rigidity and symmetry breaking", GNSAGA of INdAM and the MIUR grant “Dipartimenti di Eccellenza” 2018 - 2022, CUP: E11G18000350001, DISMA, Politecnico di Torino. Open access funding provided by Politecnico di Torino within the CRUI-CARE Agreement.
ASJC Scopus subject areas
- General Mathematics