Abstract
Boron-doped diamond (BDD) is u versatile and novel electrode material which, due to its mechanical and chemical robustness, wide potential window, low background interference, und ease of chemical modification, is becoming an interesting alternative to conventional electrodes for a wide range of electrochemical applications. It is shown in this study that BDD is a good substrate for the ultrasound-enhanced electrodeposition of lead dioxide, producing strongly adhered electrically conducting deposits. Power ultrasound is used to enhance both the efficiency of the PbO2 deposition procedure and the rate of the electrocatalytic ethylene glycol oxidation process at the PbO2-modified BDO electrode. The presence of high levels of aqueous organic material is shown to interfere with the lead dioxide deposition process. Under optimized insonation conditions the PbO2 deposit, quantified by using cathodic stripping voltammetry, is shown to be mechanically stable. When used in conjunction with power ultrasound to perform the electrocatalytic oxidation of ethylene glycol two distinct types of oxidation processes at PbO2, chemically rate limited and electrochemically rate limited, are observed.
Original language | English |
---|---|
Journal | Journal of the Electrochemical Society |
Volume | 148 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Dec 2001 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Renewable Energy, Sustainability and the Environment
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Materials Chemistry
- Electrochemistry