Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

Shoichi Okaba, Tetsushi Takano, Fetah Benabid, Tom Bradley, Luca Vincetti, Zakhar Maizelis, Valery Yampol'Skii, Franco Nori, Hidetoshi Katori

Research output: Contribution to journalArticlepeer-review

81 Citations (SciVal)


Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom-atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0-3 P1 (m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time.

Original languageEnglish
Article number4096
JournalNature Communications
Publication statusPublished - 17 Jun 2014

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Chemistry(all)
  • Physics and Astronomy(all)


Dive into the research topics of 'Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre'. Together they form a unique fingerprint.

Cite this