TY - JOUR
T1 - Lack of multisensory integration in hemianopia
T2 - No Influence of Visual Stimuli on Aurally Guided Saccades to the Blind Hemifield
AU - Ten Brink, Antonia F
AU - Nijboer, Tanja C W
AU - Bergsma, Douwe P
AU - Barton, Jason J S
AU - Van der Stigchel, Stefan
PY - 2015/4/2
Y1 - 2015/4/2
N2 - In patients with visual hemifield defects residual visual functions may be present, a phenomenon called blindsight. The superior colliculus (SC) is part of the spared pathway that is considered to be responsible for this phenomenon. Given that the SC processes input from different modalities and is involved in the programming of saccadic eye movements, the aim of the present study was to examine whether multimodal integration can modulate oculomotor competition in the damaged hemifield. We conducted two experiments with eight patients who had visual field defects due to lesions that affected the retinogeniculate pathway but spared the retinotectal direct SC pathway. They had to make saccades to an auditory target that was presented alone or in combination with a visual stimulus. The visual stimulus could either be spatially coincident with the auditory target (possibly enhancing the auditory target signal), or spatially disparate to the auditory target (possibly competing with the auditory tar-get signal). For each patient we compared the saccade endpoint deviation in these two bi-modal conditions with the endpoint deviation in the unimodal condition (auditory target alone). In all seven hemianopic patients, saccade accuracy was affected only by visual stimuli in the intact, but not in the blind visual field. In one patient with a more limited quadrantano-pia, a facilitation effect of the spatially coincident visual stimulus was observed. We conclude that our results show that multisensory integration is infrequent in the blind field of patients with hemianopia.
AB - In patients with visual hemifield defects residual visual functions may be present, a phenomenon called blindsight. The superior colliculus (SC) is part of the spared pathway that is considered to be responsible for this phenomenon. Given that the SC processes input from different modalities and is involved in the programming of saccadic eye movements, the aim of the present study was to examine whether multimodal integration can modulate oculomotor competition in the damaged hemifield. We conducted two experiments with eight patients who had visual field defects due to lesions that affected the retinogeniculate pathway but spared the retinotectal direct SC pathway. They had to make saccades to an auditory target that was presented alone or in combination with a visual stimulus. The visual stimulus could either be spatially coincident with the auditory target (possibly enhancing the auditory target signal), or spatially disparate to the auditory target (possibly competing with the auditory tar-get signal). For each patient we compared the saccade endpoint deviation in these two bi-modal conditions with the endpoint deviation in the unimodal condition (auditory target alone). In all seven hemianopic patients, saccade accuracy was affected only by visual stimuli in the intact, but not in the blind visual field. In one patient with a more limited quadrantano-pia, a facilitation effect of the spatially coincident visual stimulus was observed. We conclude that our results show that multisensory integration is infrequent in the blind field of patients with hemianopia.
U2 - 10.1371/journal.pone.0122054
DO - 10.1371/journal.pone.0122054
M3 - Article
SN - 1932-6203
VL - 10
JO - PLoS ONE
JF - PLoS ONE
IS - 4
M1 - e0122054
ER -