Kinetics versus Charge SeparationSeparation: Improving the Activity of Stoichiometric and Non-Stoichiometric Hematite Photoanodes Using a Molecular Iridium Water Oxidation Catalyst

Jonathon W. Moir, Emma V. Sackville, Ulrich Hintermair, Geoffrey A. Ozin

Research output: Contribution to journalArticle

14 Citations (Scopus)
29 Downloads (Pure)

Abstract

Oxygen-deficient iron oxide thin films, which have recently been shown to be highly active for photoelectrochemical water oxidation, were surface-functionalized with a monolayer of a molecular iridium water oxidation cocatalyst. The iridium catalyst was found to dramatically improve the kinetics of the water oxidation reaction at both stoichiometric and nonstoichiometric α-
Fe2O3‑x surfaces. This was found to be the case in both the dark and in the light as evidenced by cyclic voltammetry, Tafel analysis, and electrochemical impedance spectroscopy (EIS). Oxygen evolution measurements under working conditions confirmed high Faradaic efficiencies of 69−100% and good stability over 22 h of operation for the functionalized electrodes. The resulting ∼200−300 mV shift in onset potential for the iridiumfunctionalized sample was attributed to improved interfacial charge transfer and oxygen evolution kinetics. Mott−Schottky plots revealed that there was no shift in flat-band potential or change in donor density following functionalization with the catalyst. The effect of the catalyst on thermodynamics and Fermi level pinning was also found to be negligible, as evidenced by opencircuit potential measurements. Finally, transient photocurrent measurements revealed that the tethered molecular catalyst did improve charge separation and increase charge density at the surface of the photoanodes, but only at high applied biases and only for the nonstoichiometric oxygen-deficient iron oxide films. These results demonstrate how molecular catalysts can be integrated with semiconductors to yield cooperative effects for photoelectrochemical water oxidation.
Original languageEnglish
Pages (from-to)12999-13012
JournalJournal of Physical Chemistry C
Volume120
Issue number24
Early online date1 Jun 2016
DOIs
Publication statusPublished - 23 Jun 2016

Fingerprint

Iridium
Hematite
hematite
iridium
catalysts
Oxidation
oxidation
Catalysts
Kinetics
Water
Oxygen
kinetics
water
oxygen
Iron oxides
iron oxides
Oxide films
shift
polarization (charge separation)
Charge density

Cite this

Kinetics versus Charge SeparationSeparation: Improving the Activity of Stoichiometric and Non-Stoichiometric Hematite Photoanodes Using a Molecular Iridium Water Oxidation Catalyst. / Moir, Jonathon W.; Sackville, Emma V.; Hintermair, Ulrich; Ozin, Geoffrey A.

In: Journal of Physical Chemistry C, Vol. 120, No. 24, 23.06.2016, p. 12999-13012.

Research output: Contribution to journalArticle

@article{89697be393b74581bf78bb50068f378b,
title = "Kinetics versus Charge SeparationSeparation: Improving the Activity of Stoichiometric and Non-Stoichiometric Hematite Photoanodes Using a Molecular Iridium Water Oxidation Catalyst",
abstract = "Oxygen-deficient iron oxide thin films, which have recently been shown to be highly active for photoelectrochemical water oxidation, were surface-functionalized with a monolayer of a molecular iridium water oxidation cocatalyst. The iridium catalyst was found to dramatically improve the kinetics of the water oxidation reaction at both stoichiometric and nonstoichiometric α-Fe2O3‑x surfaces. This was found to be the case in both the dark and in the light as evidenced by cyclic voltammetry, Tafel analysis, and electrochemical impedance spectroscopy (EIS). Oxygen evolution measurements under working conditions confirmed high Faradaic efficiencies of 69−100{\%} and good stability over 22 h of operation for the functionalized electrodes. The resulting ∼200−300 mV shift in onset potential for the iridiumfunctionalized sample was attributed to improved interfacial charge transfer and oxygen evolution kinetics. Mott−Schottky plots revealed that there was no shift in flat-band potential or change in donor density following functionalization with the catalyst. The effect of the catalyst on thermodynamics and Fermi level pinning was also found to be negligible, as evidenced by opencircuit potential measurements. Finally, transient photocurrent measurements revealed that the tethered molecular catalyst did improve charge separation and increase charge density at the surface of the photoanodes, but only at high applied biases and only for the nonstoichiometric oxygen-deficient iron oxide films. These results demonstrate how molecular catalysts can be integrated with semiconductors to yield cooperative effects for photoelectrochemical water oxidation.",
author = "Moir, {Jonathon W.} and Sackville, {Emma V.} and Ulrich Hintermair and Ozin, {Geoffrey A.}",
year = "2016",
month = "6",
day = "23",
doi = "10.1021/acs.jpcc.6b00735",
language = "English",
volume = "120",
pages = "12999--13012",
journal = "Journal of Physical Chemistry C",
issn = "1932-7447",
publisher = "American Chemical Society",
number = "24",

}

TY - JOUR

T1 - Kinetics versus Charge SeparationSeparation: Improving the Activity of Stoichiometric and Non-Stoichiometric Hematite Photoanodes Using a Molecular Iridium Water Oxidation Catalyst

AU - Moir, Jonathon W.

AU - Sackville, Emma V.

AU - Hintermair, Ulrich

AU - Ozin, Geoffrey A.

PY - 2016/6/23

Y1 - 2016/6/23

N2 - Oxygen-deficient iron oxide thin films, which have recently been shown to be highly active for photoelectrochemical water oxidation, were surface-functionalized with a monolayer of a molecular iridium water oxidation cocatalyst. The iridium catalyst was found to dramatically improve the kinetics of the water oxidation reaction at both stoichiometric and nonstoichiometric α-Fe2O3‑x surfaces. This was found to be the case in both the dark and in the light as evidenced by cyclic voltammetry, Tafel analysis, and electrochemical impedance spectroscopy (EIS). Oxygen evolution measurements under working conditions confirmed high Faradaic efficiencies of 69−100% and good stability over 22 h of operation for the functionalized electrodes. The resulting ∼200−300 mV shift in onset potential for the iridiumfunctionalized sample was attributed to improved interfacial charge transfer and oxygen evolution kinetics. Mott−Schottky plots revealed that there was no shift in flat-band potential or change in donor density following functionalization with the catalyst. The effect of the catalyst on thermodynamics and Fermi level pinning was also found to be negligible, as evidenced by opencircuit potential measurements. Finally, transient photocurrent measurements revealed that the tethered molecular catalyst did improve charge separation and increase charge density at the surface of the photoanodes, but only at high applied biases and only for the nonstoichiometric oxygen-deficient iron oxide films. These results demonstrate how molecular catalysts can be integrated with semiconductors to yield cooperative effects for photoelectrochemical water oxidation.

AB - Oxygen-deficient iron oxide thin films, which have recently been shown to be highly active for photoelectrochemical water oxidation, were surface-functionalized with a monolayer of a molecular iridium water oxidation cocatalyst. The iridium catalyst was found to dramatically improve the kinetics of the water oxidation reaction at both stoichiometric and nonstoichiometric α-Fe2O3‑x surfaces. This was found to be the case in both the dark and in the light as evidenced by cyclic voltammetry, Tafel analysis, and electrochemical impedance spectroscopy (EIS). Oxygen evolution measurements under working conditions confirmed high Faradaic efficiencies of 69−100% and good stability over 22 h of operation for the functionalized electrodes. The resulting ∼200−300 mV shift in onset potential for the iridiumfunctionalized sample was attributed to improved interfacial charge transfer and oxygen evolution kinetics. Mott−Schottky plots revealed that there was no shift in flat-band potential or change in donor density following functionalization with the catalyst. The effect of the catalyst on thermodynamics and Fermi level pinning was also found to be negligible, as evidenced by opencircuit potential measurements. Finally, transient photocurrent measurements revealed that the tethered molecular catalyst did improve charge separation and increase charge density at the surface of the photoanodes, but only at high applied biases and only for the nonstoichiometric oxygen-deficient iron oxide films. These results demonstrate how molecular catalysts can be integrated with semiconductors to yield cooperative effects for photoelectrochemical water oxidation.

UR - http://dx.doi.org/10.1021/acs.jpcc.6b00735

UR - http://dx.doi.org/10.1021/acs.jpcc.6b00735

U2 - 10.1021/acs.jpcc.6b00735

DO - 10.1021/acs.jpcc.6b00735

M3 - Article

VL - 120

SP - 12999

EP - 13012

JO - Journal of Physical Chemistry C

JF - Journal of Physical Chemistry C

SN - 1932-7447

IS - 24

ER -