TY - JOUR
T1 - Isolation and chemical modification of clerodane diterpenoids from Salvia species as potential agonists at the kappa-opioid receptor
AU - Li, Y Q
AU - Husbands, S M
AU - Mahon, M F
AU - Traynor, J R
AU - Rowan, M G
N1 - ID number: ISI:000248370000018
PY - 2007
Y1 - 2007
N2 - The clerodane diterpenoid salvinorin A (1), the main active component of the psychotropic herb Salvia divinorum, has been reported to be a potent agonist at the kappa-opioid receptor. Computer modeling suggested that splendidin (2) from S. splendens, as well as related compounds, might possess similar activities. In the present study, this hypothesis was tested by determination of the binding properties of a series of structural congeners, compounds 2-8, at the mu-, delta-, and kappa-opioid receptors. However, none of these compounds showed significant binding to any of the opioid-receptor subtypes, thus disproving the above hypothesis. The novel compounds 7 and 8 were obtained semi-synthetically by selective modification of salvifarin (5), isolated from Salvia farinacea, upon epoxide-ring opening with AcOH in the presence of indium(III) triflate. Also, the X-ray crystal structure of salvifaricin (6; Fig.), obtained from S. farinacea, was determined for the first time and used, in combination with in-depth NMR experiments, to elucidate the absolute configurations of the new products. Our experiments demonstrate that the relatively well-accessible diterpenoid 6 could be used as starting material for future studies into the structure-activity relationship at the K-opioid receptor.
AB - The clerodane diterpenoid salvinorin A (1), the main active component of the psychotropic herb Salvia divinorum, has been reported to be a potent agonist at the kappa-opioid receptor. Computer modeling suggested that splendidin (2) from S. splendens, as well as related compounds, might possess similar activities. In the present study, this hypothesis was tested by determination of the binding properties of a series of structural congeners, compounds 2-8, at the mu-, delta-, and kappa-opioid receptors. However, none of these compounds showed significant binding to any of the opioid-receptor subtypes, thus disproving the above hypothesis. The novel compounds 7 and 8 were obtained semi-synthetically by selective modification of salvifarin (5), isolated from Salvia farinacea, upon epoxide-ring opening with AcOH in the presence of indium(III) triflate. Also, the X-ray crystal structure of salvifaricin (6; Fig.), obtained from S. farinacea, was determined for the first time and used, in combination with in-depth NMR experiments, to elucidate the absolute configurations of the new products. Our experiments demonstrate that the relatively well-accessible diterpenoid 6 could be used as starting material for future studies into the structure-activity relationship at the K-opioid receptor.
M3 - Article
SN - 1612-1872
VL - 4
SP - 1586
EP - 1593
JO - Chemistry & Biodiversity
JF - Chemistry & Biodiversity
IS - 7
ER -