TY - JOUR
T1 - Plasmodium falciparum dynein light chain 1 interacts with actin/myosin during blood stage development
AU - Daher, W
AU - Pierrot, C
AU - Kalamou, H
AU - Pinder, J C
AU - Margos, Gabriele
AU - Dive, D
AU - Franke-Fayard, B
AU - Janse, C J
AU - Khalife, J
PY - 2010/6/25
Y1 - 2010/6/25
N2 - Dynein light chain 1 (LC1), a member of the leucine-rich repeat protein family, has been shown to be engaged in controlling flagellar motility in Chlamydomonas reinhardtii and Trypanosoma brucei via its interaction with the dynein γ heavy chain. In Plasmodium falciparum, we have identified the LC1 ortholog, designated Pfdlc1. Negative attempts to disrupt the dlc1 gene by reverse genetic approaches in both P. falciparum and P. berghei suggest either its essentiality for parasite survival or the inaccessibility of its locus. Expression studies revealed high levels of DLC1 protein in late trophozoites and schizonts, pointing to an unexpected role of this protein in blood-stage parasites as they do not have flagella. Interactions studies and co-immunoprecipitation experiments revealed that PfDLC1 was able to bind to P. falciparum myosin A and actin 1. The PfDLC1 interacting domains present in P. falciparum myosin A and actin 1 were mapped to sequences containing SDIE and/or EEMKT motifs present in the upper 50-kDa segment of the myosin A head domain and in the subdomain IV of actin 1, respectively. Detection of PfDLC1 by fluorescence tagging and immunofluorescence staining using specific antibodies showed a cytoplasmic location similar to actin and immunofluorescence studies showed a co-localization of PfDLC1 and myosin A. Taken together, these findings suggest that PfDLC1 might play an important role in P. falciparum erythrocytic stages by its interaction with myosin A and actin 1, known to be essential for parasite development.
AB - Dynein light chain 1 (LC1), a member of the leucine-rich repeat protein family, has been shown to be engaged in controlling flagellar motility in Chlamydomonas reinhardtii and Trypanosoma brucei via its interaction with the dynein γ heavy chain. In Plasmodium falciparum, we have identified the LC1 ortholog, designated Pfdlc1. Negative attempts to disrupt the dlc1 gene by reverse genetic approaches in both P. falciparum and P. berghei suggest either its essentiality for parasite survival or the inaccessibility of its locus. Expression studies revealed high levels of DLC1 protein in late trophozoites and schizonts, pointing to an unexpected role of this protein in blood-stage parasites as they do not have flagella. Interactions studies and co-immunoprecipitation experiments revealed that PfDLC1 was able to bind to P. falciparum myosin A and actin 1. The PfDLC1 interacting domains present in P. falciparum myosin A and actin 1 were mapped to sequences containing SDIE and/or EEMKT motifs present in the upper 50-kDa segment of the myosin A head domain and in the subdomain IV of actin 1, respectively. Detection of PfDLC1 by fluorescence tagging and immunofluorescence staining using specific antibodies showed a cytoplasmic location similar to actin and immunofluorescence studies showed a co-localization of PfDLC1 and myosin A. Taken together, these findings suggest that PfDLC1 might play an important role in P. falciparum erythrocytic stages by its interaction with myosin A and actin 1, known to be essential for parasite development.
UR - http://www.scopus.com/inward/record.url?scp=77953782201&partnerID=8YFLogxK
UR - http://dx.doi.org/10.1074/jbc.M110.102806
U2 - 10.1074/jbc.M110.102806
DO - 10.1074/jbc.M110.102806
M3 - Article
SN - 0021-9258
VL - 285
SP - 20180
EP - 20191
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 26
ER -