Investigation of the Dynamics of 1-Octene Adsorption at 293 K in a ZSM-5 Catalyst by Inelastic and Quasielastic Neutron Scattering

Alexander Hawkins, Alexander J O'Malley, Andrea Zachariou, Paul Collier, Russell Ewings, Ian P. Silverwood, Russell Howe, Stewart F. Parker, David Lennon

Research output: Contribution to journalArticle

4 Citations (Scopus)


The properties of 1-octene adsorbed in zeolite ZSM-5 at 293 K are studied by means of inelastic and quasielastic neutron scatterings (INS and QENS) to investigate interactions relevant to the zeolite solid acid catalysis of fluidized catalytic cracking reactions. The INS spectrum is compared to that recorded for the solid alkene and reveals significant changes of bonding on adsorption at ambient temperatures; the changes are attributed to the oligomerization of the adsorbed 1-octene to form a medium chain n-alkane or n-alkane cation. QENS analysis shows that these oligomers are immobilized within the zeolite pore structure, but a temperature-dependant fraction is able to rotate around their long axis within the pore channels.
Original languageEnglish
Pages (from-to)417-425
JournalJournal of Physical Chemistry C
Issue number1
Early online date13 Dec 2018
Publication statusPublished - 13 Dec 2019

Cite this