Internal wrinkling instabilities in layered media

T. J. Dodwell

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

The large deformation Cosserat continuum model presented shows the potential of capturing internal buckling instabilities within layered media at a fraction of the computational cost when compared with conventional modelling methods. A homogenized elasto-plastic Cosserat tensor is derived for periodic arrangements of orthotropic elastic layers separated by weak interfaces that exhibit a modified Mohr–Coulomb friction law. Focus is given to the physical interpretation of the Cosserat deformation measures, the derivation of the Cosserat elastic tensor and implementation of the model using the finite element method. The resulting formulation is validated for three simplified loading scenarios: a cantilever, internal buckling and simple shear of a multilayered beam. Finally, the model is applied to a new application to capture the formation of wrinkling defects during the manufacturing of composite laminates. The results show good agreement with observed manufacturing defects, demonstrating the clear potential for application of the Cosserat model within composite process modelling and other layered material applications.

Original languageEnglish
Pages (from-to)3225-3243
Number of pages20
JournalPhilosophical Magazine
Volume95
Issue number28-30
Early online date20 Apr 2015
DOIs
Publication statusPublished - 2015

Keywords

  • composite manufacturing defects
  • Cosserat continuum
  • Cosserat finite elements
  • internal buckling instabilities
  • layered media
  • modified Mohr–Coulomb

Fingerprint Dive into the research topics of 'Internal wrinkling instabilities in layered media'. Together they form a unique fingerprint.

Cite this