Abstract

The onboard direct current (DC) system in electric aircraft could face a severe fault current, which is tens of times the nominal current in a short-circuit fault. It is critical to limit the fault current and clear the fault within a few milliseconds to prevent any damage to the DC system. A protection method using a resistive superconducting fault current limiter (SFCL) with a solid-state DC circuit breaker (SSCB) to manage the DC short-circuit fault is proposed and experimentally verified. A bifilar SFCL coil prototype with two types of connection to achieve low and high inductance is designed and tested, which reduces the fault current considerably from 2000 A to below 1000 A. The performance when integrating the low and high inductance SFCL with a solid-state DC circuit breaker are investigated. It is found that when integrating the SFCL with the SSCB, a high voltage is induced across the high inductance SFCL during current interruption tests. In terms of reliability and durability, the low inductance SFCL is preferred to integrate with the SSCB. The experimental results show that the low inductance SFCL can be an effective solution to protect the DC system from severe fault currents and then SSCB can rapidly and reliably interrupt the fault current at 1000 A.

Original languageEnglish
Article number108630
JournalInternational Journal of Electrical Power & Energy Systems
Volume145
Early online date21 Sept 2022
DOIs
Publication statusPublished - 28 Feb 2023

Bibliographical note

Funding Information:
This work is funded as part of the UK EPSRC: Developing superconducting fault current limiters (SFCLs) for distributed electric propulsion aircraft: EP/S000720/1, and the UK Royal Society International Exchanges 2018 Cost Share (China): Advanced DC fault protection by integration of superconducting fault current limiter (SFCL) with DC circuit breaker: IEC\NSFC\181111.

Keywords

  • Circuit breaker testing
  • DC circuit breaker
  • Electric aircraft
  • SFCL
  • Solid-state circuit breaker

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Integration of superconducting fault current limiter with solid-state DC circuit breaker'. Together they form a unique fingerprint.

Cite this