Integral points on symmetric affine cubic surfaces

H. Uppal

Research output: Contribution to journalArticlepeer-review

Abstract

We show that if f(u) ∈ Z[u] is a monic cubic polynomial, then for all but finitely many n∈ Z the affine cubic surface f(u1)+f(u2)+f(u3)=n⊂AZ3 has no integral Brauer-Manin obstruction to the Hasse principle.

Original languageEnglish
Pages (from-to)1305-1331
Number of pages27
JournalManuscripta Mathematica
Volume173
Issue number3-4
Early online date2 Aug 2023
DOIs
Publication statusPublished - 31 Mar 2024

Keywords

  • 11D25
  • 14F22 (Secondary)
  • 14G05
  • 14G12 (Primary)

ASJC Scopus subject areas

  • General Mathematics

Fingerprint

Dive into the research topics of 'Integral points on symmetric affine cubic surfaces'. Together they form a unique fingerprint.

Cite this