Abstract
We prove that the existence of a dispersionless Lax pair with spectral parameter for a nondegenerate hyperbolic second order partial differential equation (PDE) is equivalent to the canonical conformal structure defined by the symbol being Einstein–Weyl on any solution in 3D, and self-dual on any solution in 4D. The first main ingredient in the proof is a characteristic property for dispersionless Lax pairs. The second is the projective behaviour of the Lax pair with respect to the spectral parameter. Both are established for nondegenerate determined systems of PDEs of any order. Thus our main result applies more generally to any such PDE system whose characteristic variety is a quadric hypersurface.
Original language | English |
---|---|
Pages (from-to) | 1811-1841 |
Number of pages | 31 |
Journal | Communications in Mathematical Physics |
Volume | 382 |
Issue number | 3 |
Early online date | 25 Nov 2020 |
DOIs | |
Publication status | Published - 1 Mar 2021 |
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Mathematical Physics