Abstract
Inhibitory neural networks are found to encode high volumes of information through delayed inhibition. We show that inhibition delay increases storage capacity through a Stirling transform of the minimum capacity which stabilizes locally coherent oscillations. We obtain both the exact and asymptotic formulas for the total number of dynamic attractors. Our results predict a (ln2)-N-fold increase in capacity for an N-neuron network and demonstrate high-density associative memories which host a maximum number of oscillations in analog neural devices.
Original language | English |
---|---|
Article number | 030301(R) |
Pages (from-to) | 1-4 |
Number of pages | 4 |
Journal | Physical Review E |
Volume | 97 |
Issue number | 3 |
Early online date | 9 Mar 2018 |
DOIs | |
Publication status | Published - 9 Mar 2018 |
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Statistics and Probability
- Condensed Matter Physics
Fingerprint
Dive into the research topics of 'Inhibition Delay Increases Neural Network Capacity through Stirling Transform'. Together they form a unique fingerprint.Profiles
-
-
Alain Nogaret
- Department of Physics - Professor
- Centre for Networks and Collective Behaviour
- Centre for Nanoscience and Nanotechnology
- Condensed Matter Physics CDT
- Institute for Mathematical Innovation (IMI)
- Centre for Therapeutic Innovation
- Centre for Mathematical Biology
- Bath Institute for the Augmented Human
- NanoBioEletronics - Head of Group
Person: Research & Teaching, Core staff, Affiliate staff