Influence of Temperature Distribution on Radial Growth of Compressor Discs

Research output: Contribution to journalArticle

Abstract

For the next generation of aero-engines, manufacturers are planning to increase the overall compressor pressure ratio from existing values around 50:1 to values of 70:1. The requirement to control the tight clearances between the blade tips and the casing over all engine-operating conditions is a challenge for the engine designer attempting to minimise tip-clearances losses. Accurate prediction of the tip clearance requires an accurate prediction of the radial growth of the compressor rotor, which depends on the temperature distribution of the disc. The flow in the rotating cavities between adjacent discs is buoyancy-driven, which creates a conjugate heat transfer problem: the disc temperature depends on the radial distribution of Nusselt number, which in turn depends on the radial distribution of disc temperature.
This paper focuses on calculating the radial growth of a simplified compressor disc in isolation from the other components. Calculations were performed using steady one-dimensional (1D) theoretical and two-dimensional finite-element computations (2D FEA) for overall pressure ratios (OPR) of 50:1, 60:1 and 70:1. At each pressure ratio, calculations were conducted for five different temperature distributions; the distribution based on an experimentally-validated buoyancy model was used as the datum case, and results from this were compared with those from linear, quadratic, cubic and quartic power laws.
The results show that the assumed distribution of disc temperature has a significant effect on the calculated disc growth, whereas the pressure ratio has only a relatively small effect. The good agreement between the growth calculated by the 1D theoretical model and the FEA suggests that the 1D model should be useful for design purposes. Although the results were obtained for steady-state conditions, a method is outlined for calculating the growth under transient conditions.
Original languageEnglish
Article numberGTP-19-1728
JournalJournal of Engineering for Gas Turbines and Power: Transactions of the ASME
Publication statusAccepted/In press - 27 Dec 2019

Cite this

@article{7b6b0fa709f54affb4e6e7ad12d7dced,
title = "Influence of Temperature Distribution on Radial Growth of Compressor Discs",
abstract = "For the next generation of aero-engines, manufacturers are planning to increase the overall compressor pressure ratio from existing values around 50:1 to values of 70:1. The requirement to control the tight clearances between the blade tips and the casing over all engine-operating conditions is a challenge for the engine designer attempting to minimise tip-clearances losses. Accurate prediction of the tip clearance requires an accurate prediction of the radial growth of the compressor rotor, which depends on the temperature distribution of the disc. The flow in the rotating cavities between adjacent discs is buoyancy-driven, which creates a conjugate heat transfer problem: the disc temperature depends on the radial distribution of Nusselt number, which in turn depends on the radial distribution of disc temperature. This paper focuses on calculating the radial growth of a simplified compressor disc in isolation from the other components. Calculations were performed using steady one-dimensional (1D) theoretical and two-dimensional finite-element computations (2D FEA) for overall pressure ratios (OPR) of 50:1, 60:1 and 70:1. At each pressure ratio, calculations were conducted for five different temperature distributions; the distribution based on an experimentally-validated buoyancy model was used as the datum case, and results from this were compared with those from linear, quadratic, cubic and quartic power laws.The results show that the assumed distribution of disc temperature has a significant effect on the calculated disc growth, whereas the pressure ratio has only a relatively small effect. The good agreement between the growth calculated by the 1D theoretical model and the FEA suggests that the 1D model should be useful for design purposes. Although the results were obtained for steady-state conditions, a method is outlined for calculating the growth under transient conditions.",
author = "Dario Luberti and Hui Tang and James Scobie and Oliver Pountney and Mike Owen and Gary Lock",
year = "2019",
month = "12",
day = "27",
language = "English",
journal = "Journal of Engineering for Gas Turbines and Power: Transactions of the ASME",
issn = "0742-4795",
publisher = "American Society of Mechanical Engineers (ASME)",

}

TY - JOUR

T1 - Influence of Temperature Distribution on Radial Growth of Compressor Discs

AU - Luberti, Dario

AU - Tang, Hui

AU - Scobie, James

AU - Pountney, Oliver

AU - Owen, Mike

AU - Lock, Gary

PY - 2019/12/27

Y1 - 2019/12/27

N2 - For the next generation of aero-engines, manufacturers are planning to increase the overall compressor pressure ratio from existing values around 50:1 to values of 70:1. The requirement to control the tight clearances between the blade tips and the casing over all engine-operating conditions is a challenge for the engine designer attempting to minimise tip-clearances losses. Accurate prediction of the tip clearance requires an accurate prediction of the radial growth of the compressor rotor, which depends on the temperature distribution of the disc. The flow in the rotating cavities between adjacent discs is buoyancy-driven, which creates a conjugate heat transfer problem: the disc temperature depends on the radial distribution of Nusselt number, which in turn depends on the radial distribution of disc temperature. This paper focuses on calculating the radial growth of a simplified compressor disc in isolation from the other components. Calculations were performed using steady one-dimensional (1D) theoretical and two-dimensional finite-element computations (2D FEA) for overall pressure ratios (OPR) of 50:1, 60:1 and 70:1. At each pressure ratio, calculations were conducted for five different temperature distributions; the distribution based on an experimentally-validated buoyancy model was used as the datum case, and results from this were compared with those from linear, quadratic, cubic and quartic power laws.The results show that the assumed distribution of disc temperature has a significant effect on the calculated disc growth, whereas the pressure ratio has only a relatively small effect. The good agreement between the growth calculated by the 1D theoretical model and the FEA suggests that the 1D model should be useful for design purposes. Although the results were obtained for steady-state conditions, a method is outlined for calculating the growth under transient conditions.

AB - For the next generation of aero-engines, manufacturers are planning to increase the overall compressor pressure ratio from existing values around 50:1 to values of 70:1. The requirement to control the tight clearances between the blade tips and the casing over all engine-operating conditions is a challenge for the engine designer attempting to minimise tip-clearances losses. Accurate prediction of the tip clearance requires an accurate prediction of the radial growth of the compressor rotor, which depends on the temperature distribution of the disc. The flow in the rotating cavities between adjacent discs is buoyancy-driven, which creates a conjugate heat transfer problem: the disc temperature depends on the radial distribution of Nusselt number, which in turn depends on the radial distribution of disc temperature. This paper focuses on calculating the radial growth of a simplified compressor disc in isolation from the other components. Calculations were performed using steady one-dimensional (1D) theoretical and two-dimensional finite-element computations (2D FEA) for overall pressure ratios (OPR) of 50:1, 60:1 and 70:1. At each pressure ratio, calculations were conducted for five different temperature distributions; the distribution based on an experimentally-validated buoyancy model was used as the datum case, and results from this were compared with those from linear, quadratic, cubic and quartic power laws.The results show that the assumed distribution of disc temperature has a significant effect on the calculated disc growth, whereas the pressure ratio has only a relatively small effect. The good agreement between the growth calculated by the 1D theoretical model and the FEA suggests that the 1D model should be useful for design purposes. Although the results were obtained for steady-state conditions, a method is outlined for calculating the growth under transient conditions.

M3 - Article

JO - Journal of Engineering for Gas Turbines and Power: Transactions of the ASME

JF - Journal of Engineering for Gas Turbines and Power: Transactions of the ASME

SN - 0742-4795

M1 - GTP-19-1728

ER -