Projects per year
Abstract
Polymer stabilized nanodiscs are self-assembled structures composed of a polymer belt that wraps around a segment of lipid bilayer, and as such are capable of encapsulating membrane proteins directly from the cell membrane. To date, most studies on these nanodiscs have used poly(styrene-co-maleic acid) (SMA) with the term SMA-lipid particles (SMALPs) coined to describe them. In this study, we have determined the physical and thermodynamic properties of such nanodiscs made with two different SMA copolymers. These include a widely used and commercially available statistical poly(styrene-co-maleic acid) copolymer (coSMA) and a reversible addition–fragmentation chain transfer synthesized copolymer with narrow molecular weight distribution and alternating styrene and maleic acid groups with a polystyrene tail, (altSMA). We define phase diagrams for each polymer, and show that, regardless of polymer topological structure, self-assembly is driven by the free energy change associated with the polymers. We also show that nanodisc size is polymer dependent, but can be modified by varying polymer concentration. The thermal stability of each nanodisc type is similar, and both can effectively solubilize proteins from the E. coli membrane. These data show the potential for the development of different SMA polymers with controllable properties to produce nanodiscs that can be optimized for specific applications and will enable more optimized and widespread use of the SMA-based nanodiscs in membrane protein research.
Original language | English |
---|---|
Pages (from-to) | 761-772 |
Number of pages | 12 |
Journal | Biomacromolecules |
Volume | 19 |
Issue number | 3 |
Early online date | 22 Dec 2017 |
DOIs | |
Publication status | Published - 12 Mar 2018 |
ASJC Scopus subject areas
- Bioengineering
- Biomaterials
- Polymers and Plastics
- Materials Chemistry
Fingerprint
Dive into the research topics of 'Influence of Poly(styrene-co-maleic acid) Copolymer Structure on the Properties and Self-Assembly of SMALP Nanodiscs'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Detergent-free extraction and purification of membrane proteins to enable structural and functional studies.
Edler, K. (PI)
Biotechnology and Biological Sciences Research Council
1/05/13 → 30/04/16
Project: Research council