Influence of inlet conditions on the thermohydrodynamic state of a fully circumferentially grooved journal bearing

P S Keogh, M M Khonsari

Research output: Contribution to journalArticlepeer-review

12 Citations (SciVal)

Abstract

A thermohydrodynamic (THD) analysis of a fully circumferentially grooved hydrodynamic bearing is presented. The pressure distribution is obtained using the short bearing approximation taking into account the viscosity variation in the radial and circumferential coordinates. The axial temperature variation is also included by an axial averaging technique, which incorporates the supply pressure and film entry temperature in the energy equation. It is found that the determination of the lubricant temperature at the entry to the film plays an important role in the overall temperature distribution in the bearing. A simplified approach for determining this temperature is presented. An extensive set of experimental results performed by Maki and Ezzat (1980, ASME J. Lubr. Technol., 102. pp. 8-14) is used for validation purposes. The results show that mixing in nominal supply temperature and hence have a significant influence on the bearing temperature.
Original languageEnglish
Pages (from-to)525-532
Number of pages8
JournalJournal of Tribology: Transactions of the ASME
Volume123
Issue number3
Publication statusPublished - 2001

Bibliographical note

ID number: ISI:000169513400013

Fingerprint

Dive into the research topics of 'Influence of inlet conditions on the thermohydrodynamic state of a fully circumferentially grooved journal bearing'. Together they form a unique fingerprint.

Cite this