Industrial energy use and carbon emissions reduction in the chemicals sector: A UK perspective

Paul Griffin, Geoffrey Hammond, Jonathan Norman

Research output: Contribution to journalArticle

Abstract

The opportunities and challenges to reducing industrial energy demand and carbon dioxide (CO2) emissions in the Chemicals sector are evaluated with a focus on the situation in the United Kingdom (UK), although the lessons learned are applicable across much of the industrialised world. This sector can be characterised as being heterogeneous; embracing a diverse range of products (including advanced materials, cleaning fluids, composites, dyes, paints, pharmaceuticals, plastics, and surfactants). It sits on the boundary between energy-intensive (EI) and non-energy-intensive (NEI) industrial sectors. The improvement potential of various technological interventions have been identified in terms of their energy use and greenhouse gas (GHG) emissions. Currently-available best practice technologies (BPTs) will lead to further, short-term energy and CO2 emissions savings in chemicals processing, but the prospects for the commercial exploitation of innovative technologies by mid-21st century are far more speculative. A set of industrial decarbonisation ‘technology roadmaps’ out to the mid-21st Century are also reported, based on various alternative scenarios. These yield low-carbon transition pathways that represent future projections which match short-term and long-term (2050) targets with specific technological solutions to help meet the key energy saving and decarbonisation goals. The roadmaps’ contents were built up on the basis of the improvement potentials associated with various processes employed in the chemicals industry. They help identify the steps needed to be undertaken by developers, policy makers and other stakeholders in order to ensure the decarbonisation of the UK chemicals industry. The attainment of significant falls in carbon emissions over this period will depends critically on the adoption of a small number of key technologies [e.g., carbon capture and storage (CCS), energy efficiency techniques, and bioenergy], alongside a decarbonisation of the electricity supply.
LanguageEnglish
Pages587-602
Number of pages16
JournalApplied Energy
Volume227
Early online date12 Aug 2017
DOIs
StatusE-pub ahead of print - 12 Aug 2017

Fingerprint

Decarbonization
carbon emission
energy use
chemical industry
twenty first century
Carbon
Chemical industry
industrial technology
electricity supply
carbon
bioenergy
energy efficiency
Carbon capture
surfactant
energy
savings
dye
stakeholder
drug
greenhouse gas

Keywords

  • Chemical
  • Industrial energy analysis
  • Carbon accounting
  • Enabling technologies
  • Improvement potential
  • United Kingdom

Cite this

Industrial energy use and carbon emissions reduction in the chemicals sector : A UK perspective. / Griffin, Paul; Hammond, Geoffrey; Norman, Jonathan.

In: Applied Energy, Vol. 227, 01.10.2018, p. 587-602.

Research output: Contribution to journalArticle

@article{0787222ebd134ad585f1147eba4bdb17,
title = "Industrial energy use and carbon emissions reduction in the chemicals sector: A UK perspective",
abstract = "The opportunities and challenges to reducing industrial energy demand and carbon dioxide (CO2) emissions in the Chemicals sector are evaluated with a focus on the situation in the United Kingdom (UK), although the lessons learned are applicable across much of the industrialised world. This sector can be characterised as being heterogeneous; embracing a diverse range of products (including advanced materials, cleaning fluids, composites, dyes, paints, pharmaceuticals, plastics, and surfactants). It sits on the boundary between energy-intensive (EI) and non-energy-intensive (NEI) industrial sectors. The improvement potential of various technological interventions have been identified in terms of their energy use and greenhouse gas (GHG) emissions. Currently-available best practice technologies (BPTs) will lead to further, short-term energy and CO2 emissions savings in chemicals processing, but the prospects for the commercial exploitation of innovative technologies by mid-21st century are far more speculative. A set of industrial decarbonisation ‘technology roadmaps’ out to the mid-21st Century are also reported, based on various alternative scenarios. These yield low-carbon transition pathways that represent future projections which match short-term and long-term (2050) targets with specific technological solutions to help meet the key energy saving and decarbonisation goals. The roadmaps’ contents were built up on the basis of the improvement potentials associated with various processes employed in the chemicals industry. They help identify the steps needed to be undertaken by developers, policy makers and other stakeholders in order to ensure the decarbonisation of the UK chemicals industry. The attainment of significant falls in carbon emissions over this period will depends critically on the adoption of a small number of key technologies [e.g., carbon capture and storage (CCS), energy efficiency techniques, and bioenergy], alongside a decarbonisation of the electricity supply.",
keywords = "Chemical, Industrial energy analysis, Carbon accounting, Enabling technologies, Improvement potential, United Kingdom",
author = "Paul Griffin and Geoffrey Hammond and Jonathan Norman",
year = "2017",
month = "8",
day = "12",
doi = "10.1016/j.apenergy.2017.08.010",
language = "English",
volume = "227",
pages = "587--602",
journal = "Applied Energy",
issn = "0306-2619",
publisher = "Elsevier",

}

TY - JOUR

T1 - Industrial energy use and carbon emissions reduction in the chemicals sector

T2 - Applied Energy

AU - Griffin,Paul

AU - Hammond,Geoffrey

AU - Norman,Jonathan

PY - 2017/8/12

Y1 - 2017/8/12

N2 - The opportunities and challenges to reducing industrial energy demand and carbon dioxide (CO2) emissions in the Chemicals sector are evaluated with a focus on the situation in the United Kingdom (UK), although the lessons learned are applicable across much of the industrialised world. This sector can be characterised as being heterogeneous; embracing a diverse range of products (including advanced materials, cleaning fluids, composites, dyes, paints, pharmaceuticals, plastics, and surfactants). It sits on the boundary between energy-intensive (EI) and non-energy-intensive (NEI) industrial sectors. The improvement potential of various technological interventions have been identified in terms of their energy use and greenhouse gas (GHG) emissions. Currently-available best practice technologies (BPTs) will lead to further, short-term energy and CO2 emissions savings in chemicals processing, but the prospects for the commercial exploitation of innovative technologies by mid-21st century are far more speculative. A set of industrial decarbonisation ‘technology roadmaps’ out to the mid-21st Century are also reported, based on various alternative scenarios. These yield low-carbon transition pathways that represent future projections which match short-term and long-term (2050) targets with specific technological solutions to help meet the key energy saving and decarbonisation goals. The roadmaps’ contents were built up on the basis of the improvement potentials associated with various processes employed in the chemicals industry. They help identify the steps needed to be undertaken by developers, policy makers and other stakeholders in order to ensure the decarbonisation of the UK chemicals industry. The attainment of significant falls in carbon emissions over this period will depends critically on the adoption of a small number of key technologies [e.g., carbon capture and storage (CCS), energy efficiency techniques, and bioenergy], alongside a decarbonisation of the electricity supply.

AB - The opportunities and challenges to reducing industrial energy demand and carbon dioxide (CO2) emissions in the Chemicals sector are evaluated with a focus on the situation in the United Kingdom (UK), although the lessons learned are applicable across much of the industrialised world. This sector can be characterised as being heterogeneous; embracing a diverse range of products (including advanced materials, cleaning fluids, composites, dyes, paints, pharmaceuticals, plastics, and surfactants). It sits on the boundary between energy-intensive (EI) and non-energy-intensive (NEI) industrial sectors. The improvement potential of various technological interventions have been identified in terms of their energy use and greenhouse gas (GHG) emissions. Currently-available best practice technologies (BPTs) will lead to further, short-term energy and CO2 emissions savings in chemicals processing, but the prospects for the commercial exploitation of innovative technologies by mid-21st century are far more speculative. A set of industrial decarbonisation ‘technology roadmaps’ out to the mid-21st Century are also reported, based on various alternative scenarios. These yield low-carbon transition pathways that represent future projections which match short-term and long-term (2050) targets with specific technological solutions to help meet the key energy saving and decarbonisation goals. The roadmaps’ contents were built up on the basis of the improvement potentials associated with various processes employed in the chemicals industry. They help identify the steps needed to be undertaken by developers, policy makers and other stakeholders in order to ensure the decarbonisation of the UK chemicals industry. The attainment of significant falls in carbon emissions over this period will depends critically on the adoption of a small number of key technologies [e.g., carbon capture and storage (CCS), energy efficiency techniques, and bioenergy], alongside a decarbonisation of the electricity supply.

KW - Chemical

KW - Industrial energy analysis

KW - Carbon accounting

KW - Enabling technologies

KW - Improvement potential

KW - United Kingdom

UR - https://doi.org/10.1016/j.apenergy.2017.08.010

U2 - 10.1016/j.apenergy.2017.08.010

DO - 10.1016/j.apenergy.2017.08.010

M3 - Article

VL - 227

SP - 587

EP - 602

JO - Applied Energy

JF - Applied Energy

SN - 0306-2619

ER -