Improving Heat Transfer and Reducing Mass in a Gasoline Piston using Additive Manufacturing

Colin Copeland, Miguel Reyes Belmonte, Hislop Drummond, George Hopkins, Adrian Schmieder, S.W. Bredda, Sam Akehurst

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

Pressure and temperature levels within a modern internal combustion engine cylinder have been pushing at the limits of traditional materials and design. These operative conditions are due to the stringent emission and fuel economy standards that are forcing automotive engineers to develop engines with much higher power density ratios. In this scenario, downsized, turbocharged engines are an important technology to meet the future demands on transport efficiency. It is well known that within downsized turbocharged gasoline engines, thermal management becomes a vital issue for durability and combustion stability. In order to contribute to the understanding of engine thermal management, a conjugate heat transfer analysis of a downsized gasoline piston engine has been performed. The intent was to study the design possibilities afforded by the use of the Selective Laser Melting (SLM) additive manufacturing process. Thus, the study here considers the original aluminium piston with added cooling galleries and weight-saving lattice structures that can be achieved using SLM. An oil cooling gallery was introduced near the piston crown to allow a temperature reduction on the top land and a more homogeneous temperature distribution across the crown. Better temperature control should allow the combustion process to be less sensitive to knocking and pre-ignition. In addition, a shift in top ring groove due to better cooling will help to reduce crevice volume thereby reducing engine emissions. The ultimate aim is to show that this new additive manufacturing technique applied to piston design could be used to enable further downsizing for fuel economy by increasing engine compression ratio and boost pressure with improved combustion stability and phasing.
Original languageEnglish
Title of host publicationSAE Technical Paper
PublisherSAE International
Publication statusPublished - 2015
EventSAE 2015 World Congress - Detroit, USA United States
Duration: 21 Apr 201523 Apr 2015

Conference

ConferenceSAE 2015 World Congress
CountryUSA United States
CityDetroit
Period21/04/1523/04/15

Fingerprint Dive into the research topics of 'Improving Heat Transfer and Reducing Mass in a Gasoline Piston using Additive Manufacturing'. Together they form a unique fingerprint.

  • Cite this

    Copeland, C., Reyes Belmonte, M., Drummond, H., Hopkins, G., Schmieder, A., Bredda, S. W., & Akehurst, S. (2015). Improving Heat Transfer and Reducing Mass in a Gasoline Piston using Additive Manufacturing. In SAE Technical Paper [2015-01-0505] SAE International.